Package com.imsl.stat.distributions
Class ExponentialPD
java.lang.Object
com.imsl.stat.distributions.ProbabilityDistribution
com.imsl.stat.distributions.ExponentialPD
- All Implemented Interfaces:
ClosedFormMaximumLikelihoodInterface,com.imsl.stat.distributions.MethodOfMomentsInterface,PDFGradientInterface,PDFHessianInterface,Serializable,Cloneable
public class ExponentialPD
extends ProbabilityDistribution
implements Serializable, Cloneable, PDFHessianInterface, ClosedFormMaximumLikelihoodInterface, com.imsl.stat.distributions.MethodOfMomentsInterface
The exponential probability distribution.
- See Also:
-
Constructor Summary
Constructors -
Method Summary
Modifier and TypeMethodDescriptiondouble[]getClosedFormMLE(double[] x) Returns the closed form maximum likelihood estimates.double[]getClosedFormMlStandardError(double[] x) Returns the standard error based on the closed form maximum likelihood estimates.double[]Returns the lower bound for the parameter.double[]Returns the upper bound for the parameter.double[]getPDFGradient(double x, double... params) Returns the analytic gradient of the pdf.double[][]getPDFHessian(double x, double... params) Returns the analytic Hessian of the pdf.doublepdf(double x, double... params) Returns the value of the exponential probability density function.Methods inherited from class com.imsl.stat.distributions.ProbabilityDistribution
getNumberOfParameters, getPDFGradientApproximation, getPDFHessianApproximation, getRangeOfX, setRangeOfX
-
Constructor Details
-
ExponentialPD
public ExponentialPD()Constructs an exponential probability distribution.
-
-
Method Details
-
getParameterLowerBounds
public double[] getParameterLowerBounds()Returns the lower bound for the parameter.- Specified by:
getParameterLowerBoundsin classProbabilityDistribution- Returns:
- a
doublearray of length 1 containing the lower bound. b is strictly positive.
-
getParameterUpperBounds
public double[] getParameterUpperBounds()Returns the upper bound for the parameter.- Specified by:
getParameterUpperBoundsin classProbabilityDistribution- Returns:
- a
doublearray of length 1 containing the upper bound. b is strictly positive.
-
pdf
public double pdf(double x, double... params) Returns the value of the exponential probability density function.The probability density function of the exponential distribution is $$f(x|b)=\Gamma\left(x|1,b\right)=\frac{1}{b}e^{-\frac{x}{b}}$$ where b is a scale parameter.
- Specified by:
pdfin classProbabilityDistribution- Parameters:
x- adouble, the value (quantile) at which to evaluate the pdf.xmust be non negative.params- adouble, the scale parameter.- Returns:
- a
double, the probability density atxgiven the parameter value
-
getPDFGradient
public double[] getPDFGradient(double x, double... params) Returns the analytic gradient of the pdf.- Specified by:
getPDFGradientin interfacePDFGradientInterface- Parameters:
x- adouble, the value at which to evaluate the gradient.xmust be non-negative.params- adoublearray containing values of the parameter- Returns:
- a
doublearray containing the first partial derivative of the pdf with respect to the parameter
-
getPDFHessian
public double[][] getPDFHessian(double x, double... params) Returns the analytic Hessian of the pdf.- Specified by:
getPDFHessianin interfacePDFHessianInterface- Parameters:
x- adouble, the value at which to evaluate the Hessian.xmust be non-negative.params- adoublearray containing value of the parameter- Returns:
- a
doublematrix containing the second partial derivatives of the pdf with respect to the parameter
-
getClosedFormMLE
public double[] getClosedFormMLE(double[] x) Returns the closed form maximum likelihood estimates.- Specified by:
getClosedFormMLEin interfaceClosedFormMaximumLikelihoodInterface- Parameters:
x- adoublearray containing the data- Returns:
- a
doublearray containing maximum likelihood estimates
-
getClosedFormMlStandardError
public double[] getClosedFormMlStandardError(double[] x) Returns the standard error based on the closed form maximum likelihood estimates.- Specified by:
getClosedFormMlStandardErrorin interfaceClosedFormMaximumLikelihoodInterface- Parameters:
x- adoublearray containing the data- Returns:
- a
doublearray containing the standard errors
-