Package com.imsl.stat.distributions
Class GeneralizedGaussianPD
java.lang.Object
com.imsl.stat.distributions.ProbabilityDistribution
com.imsl.stat.distributions.GeneralizedGaussianPD
- All Implemented Interfaces:
com.imsl.stat.distributions.MethodOfMomentsInterface,Serializable,Cloneable
public class GeneralizedGaussianPD
extends ProbabilityDistribution
implements Serializable, Cloneable, com.imsl.stat.distributions.MethodOfMomentsInterface
The generalized Gaussian probability distribution.
- See Also:
-
Constructor Summary
ConstructorsConstructorDescriptionConstructs a generalized Gaussian probability distribution. -
Method Summary
Modifier and TypeMethodDescriptiondouble[]Returns the lower bounds of the parameters.double[]Returns the upper bounds of the parameters.doublepdf(double x, double... params) Returns the value of the generalized Gaussian probability density function.Methods inherited from class com.imsl.stat.distributions.ProbabilityDistribution
getNumberOfParameters, getPDFGradientApproximation, getPDFHessianApproximation, getRangeOfX, setRangeOfX
-
Constructor Details
-
GeneralizedGaussianPD
public GeneralizedGaussianPD()Constructs a generalized Gaussian probability distribution.
-
-
Method Details
-
getParameterLowerBounds
public double[] getParameterLowerBounds()Returns the lower bounds of the parameters.- Specified by:
getParameterLowerBoundsin classProbabilityDistribution- Returns:
- a
doublearray containing the lower bounds for \(\mu\in\mathbb{R}\), \(\alpha \gt 0\), and \(\beta \gt 0\)
-
getParameterUpperBounds
public double[] getParameterUpperBounds()Returns the upper bounds of the parameters.- Specified by:
getParameterUpperBoundsin classProbabilityDistribution- Returns:
- a
doublearray containing the upper bounds for \(\mu\in\mathbb{R}\), \(\alpha \gt 0\), and \(\beta \gt 0\)
-
pdf
public double pdf(double x, double... params) Returns the value of the generalized Gaussian probability density function.The probability density function of the generalized Gaussian distribution is
$$ f(x; \mu,\alpha, \beta) = \frac{\beta}{2\alpha\Gamma(\frac{1}{\beta})} e^{-(\frac{|x-\mu|}{\alpha})^\beta} $$
where \(\mu\in\mathbb{R}\) is the location parameter, \(\alpha \gt 0\) is the scale parameter, and \(\beta \gt 0\) is the shape parameter. Note that this follows the parameterization given in Wikipedia. There are alternative parameterizations, as in Roenko, et. al. 2014.References
1. Roenko, Alexey, Lukin, Vladimir, Djurovic, Igor, Simeunović, Marko. (2014). Estimation of parameters for generalized Gaussian distribution. ISCCSP 2014 - 2014 6th International Symposium on Communications, Control and Signal Processing, Proceedings. 376-379.
2. Wikipedia contributors. "Generalized normal distribution." Wikipedia, The Free Encyclopedia.
- Specified by:
pdfin classProbabilityDistribution- Parameters:
x- adouble, the value (quantile) at which to evaluate the pdfparams- adoublearray containing \(\mu\), \(\alpha\), and \(\beta\). The parameters can also be given in the formpdf(x,a,b,c), wherea=\(\mu\),b=\(\alpha\), andc=\(\beta\) are scalars.- Returns:
- a
double, the probability density atxgiven the parameter values
-