Package com.imsl.stat.distributions
Class LogLogisticPD
java.lang.Object
com.imsl.stat.distributions.ProbabilityDistribution
com.imsl.stat.distributions.LogLogisticPD
- All Implemented Interfaces:
com.imsl.stat.distributions.MethodOfMomentsInterface,PDFGradientInterface,PDFHessianInterface,Serializable,Cloneable
public class LogLogisticPD
extends ProbabilityDistribution
implements Serializable, Cloneable, PDFHessianInterface, com.imsl.stat.distributions.MethodOfMomentsInterface
The log-logistic probability distribution.
- See Also:
-
Constructor Summary
Constructors -
Method Summary
Modifier and TypeMethodDescriptiondouble[]getMethodOfMomentsEstimates(double[] x) Returns the method-of-moments estimates given the sample data.double[]Returns the lower bounds of the parameters.double[]Returns the upper bounds of the parameters.double[]getPDFGradient(double x, double... params) Returns the analytic gradient of the pdf.double[][]getPDFHessian(double x, double... params) Returns the analytic Hessian of the pdf.doublepdf(double x, double... params) Returns the value of the log-logistic probability density function.Methods inherited from class com.imsl.stat.distributions.ProbabilityDistribution
getNumberOfParameters, getPDFGradientApproximation, getPDFHessianApproximation, getRangeOfX, setRangeOfX
-
Constructor Details
-
LogLogisticPD
public LogLogisticPD()Constructor for the log-logistic probability distribution.
-
-
Method Details
-
getParameterLowerBounds
public double[] getParameterLowerBounds()Returns the lower bounds of the parameters.- Specified by:
getParameterLowerBoundsin classProbabilityDistribution- Returns:
- a
doublearray of length 2 containing the lower bounds for \(\alpha \gt 0\) and \(\beta \gt 0\)
-
getParameterUpperBounds
public double[] getParameterUpperBounds()Returns the upper bounds of the parameters.- Specified by:
getParameterUpperBoundsin classProbabilityDistribution- Returns:
- a
doublearray of length 2 containing the upper bounds for \(\alpha \gt 0\) and \(\beta \gt 0\)
-
pdf
public double pdf(double x, double... params) Returns the value of the log-logistic probability density function.The probability density function of the log-logistic distribution is
$$f(x,\alpha,\beta)=\frac{\beta}{\alpha} \frac{\left( x/\alpha \right )^{\beta - 1}}{\left( 1 + \left( x/\alpha \right )^{\beta} \right)^2}$$
where \(\alpha \gt 0\) is the scale parameter and \(\beta \gt 0\) is the shape parameter.
- Specified by:
pdfin classProbabilityDistribution- Parameters:
x- adouble, the strictly positive value (quantile) at which to evaluate the pdfparams- adoublearray containing the scale and shape parameters. The parameters can also be given in the formpdf(x,a,b), wherea=\(\alpha\) andb=\(\beta\) are scalars.- Returns:
- a
double, the value of the probability density function evaluated atxgiven the parameters
-
getPDFGradient
public double[] getPDFGradient(double x, double... params) Returns the analytic gradient of the pdf.- Specified by:
getPDFGradientin interfacePDFGradientInterface- Parameters:
x- adouble, the value at which to evaluate the gradientparams- adoublearray containing the parameters- Returns:
- a
doublearray containing the first partial derivatives of the pdf with respect to the parameters
-
getPDFHessian
public double[][] getPDFHessian(double x, double... params) Returns the analytic Hessian of the pdf.- Specified by:
getPDFHessianin interfacePDFHessianInterface- Parameters:
x- adouble, the value at which to evaluate the Hessianparams- adoublearray containing the parameters- Returns:
- a
doublematrix containing the second partial derivatives of the pdf with respect to the parameters
-
getMethodOfMomentsEstimates
public double[] getMethodOfMomentsEstimates(double[] x) Returns the method-of-moments estimates given the sample data.- Specified by:
getMethodOfMomentsEstimatesin interfacecom.imsl.stat.distributions.MethodOfMomentsInterface- Parameters:
x- adoublearray containing the data- Returns:
- a
doublearray containing Method of Moments estimates for \(\alpha\) and \(\beta\), the parameters of the log-logistic distribution
-