Package com.imsl.stat.distributions
Class ParetoPD
java.lang.Object
com.imsl.stat.distributions.ProbabilityDistribution
com.imsl.stat.distributions.ParetoPD
- All Implemented Interfaces:
com.imsl.stat.distributions.MethodOfMomentsInterface,PDFGradientInterface,PDFHessianInterface,Serializable,Cloneable
public class ParetoPD
extends ProbabilityDistribution
implements Serializable, Cloneable, PDFHessianInterface, com.imsl.stat.distributions.MethodOfMomentsInterface
The Pareto probability distribution.
- See Also:
-
Constructor Summary
Constructors -
Method Summary
Modifier and TypeMethodDescriptiondouble[]getMethodOfMomentsEstimates(double[] x) Returns the method-of-moments estimates given the sample data.double[]Returns the lower bounds of the parameters.double[]Returns the upper bounds of the parameters.double[]getPDFGradient(double x, double... params) Returns the analytic gradient of the pdf.double[][]getPDFHessian(double x, double... params) Returns the analytic Hessian of the pdf.doublepdf(double x, double... params) Returns the value of the Pareto probability density function.Methods inherited from class com.imsl.stat.distributions.ProbabilityDistribution
getNumberOfParameters, getPDFGradientApproximation, getPDFHessianApproximation, getRangeOfX, setRangeOfX
-
Constructor Details
-
ParetoPD
public ParetoPD()Constructor for the Pareto probability distribution.
-
-
Method Details
-
getParameterLowerBounds
public double[] getParameterLowerBounds()Returns the lower bounds of the parameters.- Specified by:
getParameterLowerBoundsin classProbabilityDistribution- Returns:
- a
doublearray of length 2 containing the lower bounds for the scale parameter (\(x_m\gt0\)) and the shape parameter (\(k\gt0\))
-
getParameterUpperBounds
public double[] getParameterUpperBounds()Returns the upper bounds of the parameters.- Specified by:
getParameterUpperBoundsin classProbabilityDistribution- Returns:
- a
doublearray of length 2 containing the upper bounds for the scale parameter (\(x_m\gt0\)) and the shape parameter (\(k\gt0\))
-
pdf
public double pdf(double x, double... params) Returns the value of the Pareto probability density function.The probability density function of the Pareto distribution is
$$f\left(x;x_m,k\right)=\left\{\begin{array}{ll} \frac{kx_m^k}{x^{k+1}} & x\ge x_m, \\[3pt] 0 & x\lt x_m.\end{array}\right.$$
where \(x_m\gt0\) is the scale parameter and \(k\gt0\) is the shape parameter.
- Specified by:
pdfin classProbabilityDistribution- Parameters:
x- adouble, the value (quantile) at which to evaluate the pdfparams- adoublearray containing the scale and shape parameters. The parameters can also be given in the formpdf(x,a,b), wherea=\(x_m\) andb=\(k\) are scalars.- Returns:
- a
double, the probability density function atxand the given parameter values
-
getPDFGradient
public double[] getPDFGradient(double x, double... params) Returns the analytic gradient of the pdf.- Specified by:
getPDFGradientin interfacePDFGradientInterface- Parameters:
x- adouble, the value at which to evaluate the gradientparams- adoublearray specifying the scale parameter (\(x_m\gt0\)) and the shape parameter (\(k\gt0\))- Returns:
- a
doublearray containing the first partial derivative of the pdf with respect to the parameters
-
getPDFHessian
public double[][] getPDFHessian(double x, double... params) Returns the analytic Hessian of the pdf.- Specified by:
getPDFHessianin interfacePDFHessianInterface- Parameters:
x- adouble, the value at which to evaluate the Hessianparams- adoublearray specifying the scale parameter (\(x_m\gt0\)) and the shape parameter (\(k\gt0\))- Returns:
- a
doublearray containing the second partial derivatives of the pdf with respect to the parameters
-
getMethodOfMomentsEstimates
public double[] getMethodOfMomentsEstimates(double[] x) Returns the method-of-moments estimates given the sample data.- Specified by:
getMethodOfMomentsEstimatesin interfacecom.imsl.stat.distributions.MethodOfMomentsInterface- Parameters:
x- adoublearray containing the data- Returns:
- a
doublearray containing method-of-moments estimates for the parameters of the Pareto distribution
-