Class ComplexSuperLUEx1

java.lang.Object
com.imsl.test.example.math.ComplexSuperLUEx1

public class ComplexSuperLUEx1 extends Object

Computes the LU factorization of a sparse complex matrix.

The LU Factorization of the sparse complex \(6 \times 6\) matrix $$ A=\begin{pmatrix} 10+7i & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\ 0.0 & 3+2i & -3+0i & -1+2i & 0.0 & 0.0 \\ 0.0 & 0.0 & 4+2i & 0.0 & 0.0 & 0.0 \\ -2-4i & 0.0 & 0.0 & 1+6i & -1+3i & 0.0 \\ -5+4i & 0.0 & 0.0 & -5+0i & 12+2i & -7+7i \\ -1+12i & -2+8i & 0.0 & 0.0 & 0.0 & 3+7i \end{pmatrix} $$ is computed. The sparse coordinate form for A is given by row, column, value triplets:

rowcolumnvalue
\(0\)\(0\)\(10+7i\)
\(1\)\(1\)\(3+2i\)
\(1\)\(2\)\(-3+0i\)
\(1\)\(3\)\(-1+2i\)
\(2\)\(2\)\(4+2i\)
\(3\)\(0\)\(-2-4i\)
\(3\)\(3\)\(1+6i\)
\(3\)\(4\)\(-1+3i\)
\(4\)\(0\)\(-5+4i\)
\(4\)\(3\)\(-5+0i\)
\(4\)\(4\)\(12+2i\)
\(4\)\(5\)\(-7+7i\)
\(5\)\(0\)\(-1+12i\)
\(5\)\(1\)\(-2+8i\)
\(5\)\(5\)\(3+7i\)

Let $$x^T = (1+i, 2+2i, 3+3i, 4+4i, 5+5i, 6+6i)$$ so that $$b_1:=Ax = {(3+17i, -19+5i, 6+18i, -38+32i, -63+49i, -57+83i)}^T$$ and $$b_2:=A^Hx = {(54-112i, 46-58i, 12, 5-51i, 78+34i, 60-94i)}^T\,.$$

The LU factorization of \(A\) is used to solve the complex sparse linear systems \(Ax=b_1\) and \(A^Hx=b_2\) with iterative refinement. The reciprocal pivot growth factor and the reciprocal condition number are also computed.

See Also:
  • Constructor Details

    • ComplexSuperLUEx1

      public ComplexSuperLUEx1()
  • Method Details