Example 2: Solve a Small Linear System with User Supplied Inner Product
A solution to a small linear system is found. The coefficient matrix is stored as a full matrix and no preconditioning is used. Typically, preconditioning is required to achieve convergence in a reasonable number of iterations. The user supplies a function to compute the inner product and norm within the Gram-Schmidt implementation.
using System;
using Imsl.Math;
using IMSLException = Imsl.IMSLException;
public class GenMinResEx2 : GenMinRes.IFunction, GenMinRes.IVectorProducts
{
private static double[,] a = {
{33.0, 16.0, 72.0},
{-24.0, -10.0, -57.0},
{18.0, -11.0, 7.0}
};
private static double[] b = {129.0, -96.0, 8.5};
// If A were to be read in from some outside source the //
// code to read the matrix could reside in a constructor. //
public void Amultp(double[] p, double[] z)
{
double[] result;
result = Matrix.Multiply(a, p);
Array.Copy(result, 0, z, 0, z.Length);
}
public double Innerproduct(double[] x, double[] y)
{
int n = x.Length;
double tmp = 0.0;
for (int i = 0; i < n; i++)
{
tmp += x[i] * y[i];
}
return tmp;
}
public double Norm(double[] x)
{
int n = x.Length;
double tmp = 0.0;
for (int i = 0; i < n; i++)
{
tmp += x[i] * x[i];
}
return System.Math.Sqrt(tmp);
}
public static void Main(String[] args)
{
int n = 3;
GenMinResEx2 atp = new GenMinResEx2();
// Construct a GenMinRes object
GenMinRes gnmnrs = new GenMinRes(n, atp);
gnmnrs.SetVectorProducts(atp);
// Solve Ax = b
new PrintMatrix("x").Print(gnmnrs.Solve(b));
}
}
Output
x
0
0 0.999999999999999
1 1.5
2 1
Link to C# source.