Example: Kolmogorov Two Sample
The following example illustrates the class KolmogorovTwoSample
routine with two randomly generated samples from a uniform(0,1) distribution. Since the two theoretical distributions are identical, we would not expect to reject the null hypothesis.
using System;
using Imsl.Stat;
using Imsl.Math;
public class KolmogorovTwoSampleEx1
{
public static void Main(String[] args)
{
double[] x = new double[100];
double[] y = new double[60];
Imsl.Stat.Random random = new Imsl.Stat.Random(123457);
random.Multiplier = 16807;
for (int i = 0; i < x.Length; i++)
{
x[i] = random.NextFloat();
}
for (int i = 0; i < y.Length; i++)
{
y[i] = random.NextFloat();
}
KolmogorovTwoSample k2s = new KolmogorovTwoSample(x, y);
Console.WriteLine("D = "+ k2s.TestStatistic);
Console.WriteLine("D+ = " + k2s.MaximumDifference);
Console.WriteLine("D- = " + k2s.MinimumDifference);
Console.WriteLine("Z = " + k2s.Z);
Console.WriteLine("Prob greater D one sided = " +
k2s.OneSidedPValue);
Console.WriteLine("Prob greater D two sided = " +
k2s.TwoSidedPValue);
Console.WriteLine("Missing X = " + k2s.NumberMissingX);
Console.WriteLine("Missing Y = " + k2s.NumberMissingY);
}
}
Output
D = 0.18
D+ = 0.18
D- = 0.01
Z = 1.10227038425243
Prob greater D one sided = 0.072010607348685
Prob greater D two sided = 0.14402121469737
Missing X = 0
Missing Y = 0
Link to C# source.