IMSL C# Numerical Library

Cdf.ExtremeValue Method 

Evaluates the extreme value cumulative probability distribution function.

public static double ExtremeValue(
   double x,
   double mu,
   double beta
);

Parameters

x
A double scalar value representing the argument at which the function is to be evaluated.
mu
A double scalar value representing the location parameter, \mu.
beta
A double scalar value representing the scale parameter, \beta.

Return Value

A double scalar value representing the probability that an extreme value random variable takes on a value less than or equal to x.

Remarks

Method ExtremeValue, also known as the Gumbel minimum distribution, evaluates the extreme value distribution function, F, of a uniform random variable with location parameter \mu and shape parameter \beta; that is,

F\left( x \right) = \int_0^x 
             {1 - e^{ - e^{\frac{x-\mu}{\beta}}}} dt

The case where \mu =0 and \beta = 1 is called the standard Gumbel distribution.

Random numbers are generated by evaluating uniform variates u_i, equating the continuous distribution function, and then solving for x_i by first computing \frac{x_i - \mu}{\beta}=log(-log(1-u_i)).

Plot of Extreme Value Distribution Function

See Also

Cdf Class | Imsl.Stat Namespace | Example