IMSL C# Numerical Library

Cdf.InverseNoncentralstudentsT Method 

Evaluates the inverse of the noncentral Student's t cumulative probability distribution function.

public static double InverseNoncentralstudentsT(
   double p,
   int idf,
   double delta
);

Parameters

p
A double scalar value representing the probability for which the function is to be evaluated.
idf
An int scalar value representing the number of degrees of freedom. This must be positive.
delta
A double scalar value representing the noncentrality parameter.

Return Value

A double scalar value. The probability that a noncentral Student's t random variable takes a value less than or equal to this returned value is p.

Remarks

Method InverseNoncentralstudentsT evaluates the inverse distribution function of a noncentral t random variable with idf degrees of freedom and noncentrality parameter delta; that is, with P = p, \nu = idf, \delta = delta, it determines t_{0} = InverseNoncentralstudentsT(p, idf, delta), such that

P = \int_{-{\infty}}^{t_{0}}{\frac{\nu^{\nu/2}e^{{-\delta^2}/2}} 
            {{\sqrt{\pi}\Gamma\left(\nu/2\right)\left(\nu+x^2\right)}^{\left(\nu+1\right)/2}}  }  
            \sum\limits_{i = 0}^\infty {\Gamma\left(\left(\nu+i+1\right)/2\right)\left(\frac{\delta^i}{i!}\right)
            \left(\frac{2x^2}{\nu+x^2}\right)^{i/2} dx}

where \Gamma (\cdot) is the gamma function. The probability that the random variable takes a value less than or equal to t_{0} is P. See NoncentralstudentsT for an alternative definition in terms of normal and chi-squared random variables. The method InverseNoncentralstudentsT uses bisection and modified regula falsi to invert the distribution function, which is evaluated using NoncentralstudentsT.

See Also

Cdf Class | Imsl.Stat Namespace | Example