In this example, the dimension d =10. The function is sampled at 200 random points, in the cube, to which what noise in the range [-0.2,0.2] is added. The error is computed at 1000 random points, also from the cube. The compute errors are less than the added noise.
using System; using Imsl.Math; public class RadialBasisEx1 { public static void Main(String[] args) { int nDim = 10; // Sample, with noise, the function at 100 randomly chosen points int nData = 200; double[,] xData = new double[nData,nDim]; double[] fData = new double[nData]; Imsl.Stat.Random rand = new Imsl.Stat.Random(234567); double[] tmp = new double[nDim]; for (int k = 0; k < nData; k++) { for (int i = 0; i < nDim; i++) { tmp[i] = xData[k,i] = 2.0 * rand.NextDouble() - 1.0; } // noisy sample fData[k] = fcn(tmp) + 0.20 * (2.0 * rand.NextDouble() - 1.0); } // Compute the radial basis approximation using 25 centers int nCenters = 25; RadialBasis rb = new RadialBasis(nDim, nCenters); rb.Update(xData, fData); // Compute the error at a randomly selected set of points int nTest = 1000; double maxError = 0.0; double aveError = 0.0; double[] x = new double[nDim]; for (int k = 0; k < nTest; k++) { for (int i = 0; i < nDim; i++) { x[i] = 2.0 * rand.NextDouble() - 1.0; } double error = Math.Abs(fcn(x) - rb.Eval(x)); aveError += error; maxError = Math.Max(error, maxError); double f = fcn(x); } aveError /= nTest; Console.WriteLine("average error is " + aveError); Console.WriteLine("maximum error is " + maxError); } // The function to approximate internal static double fcn(double[] x) { double sum = 0.0; for (int k = 0; k < x.Length; k++) { sum += x[k] * x[k]; } sum /= x.Length; return Math.Exp(-sum); } }
average error is 0.0419789795502543 maximum error is 0.171666811944547Link to C# source.