Returns the first derivatives of the Hermite quintic spline coefficients
that represent an approximate solution of the Feynman-Kac PDE.
Namespace:
Imsl.Math
Assembly:
ImslCS (in ImslCS.dll) Version: 6.5.0.0
Syntax
C# |
---|
public double[,] GetSplineCoefficientsPrime() |
Visual Basic (Declaration) |
---|
Public Function GetSplineCoefficientsPrime As Double(,) |
Visual C++ |
---|
public: array<double,2>^ GetSplineCoefficientsPrime() |
Return Value
A double matrix of dimension (tGrid.Length+1) by (3*xGrid.Length) containing the first derivatives (in time) of the coefficients of the Hermite quintic spline representation of the approximate solution for the Feynman-Kac PDE at time points 0, tGrid[0],...,tGrid[tGrid.Length-1]. The approximate solution itself is given by![f_t(x,\bar{t}) = \sum_{j=0}^{3*\text{nxGrid}-1}y_{ij}' \beta_j(x) \quad
\mbox{for} \; \bar{t} = \text{tGrid}[i-1], i=1,\ldots,\text{ntGrid},](eqn/eqn_1152.png)


Remarks
The ComputeCoefficients method must be invoked first
before invoking this method. Otherwise, the method throws an
InvalidOperationException exception.