Returns the value of an integral of a tensor-product spline
on a rectangular domain.
Namespace:
Imsl.Math
Assembly:
ImslCS (in ImslCS.dll) Version: 6.5.0.0
Syntax
C# |
---|
public double Integral( double a, double b, double c, double d ) |
Visual Basic (Declaration) |
---|
Public Function Integral ( _ a As Double, _ b As Double, _ c As Double, _ d As Double _ ) As Double |
Visual C++ |
---|
public: double Integral( double a, double b, double c, double d ) |
Parameters
- a
- Type: System..::.Double
A double specifying the lower limit for the first variable of the tensor-product spline.
- b
- Type: System..::.Double
A double specifying the upper limit for the first variable of the tensor-product spline.
- c
- Type: System..::.Double
A double specifying the lower limit for the second variable of the tensor-product spline.
- d
- Type: System..::.Double
A double specifying the upper limit for the second variable of the tensor-product spline.
Return Value
A double, the integral of the tensor-product spline over the rectangle [a, b] by [c, d].
Remarks
If s is the spline, then the Integral method returns

![\int_{t_0 }^x {\sum\limits_{i = 0}^{n - 1} {\alpha _i } } B_{i,k} \left( \tau \right)d\tau = \sum\limits_{i = 0}^{r - 1} {\left[ {\sum\limits_{j = 0}^i {\alpha _j \frac{{t_{j + k} - t_j }}{k}} } \right]} B_{i,k + 1} \left( x \right)](eqn/eqn_1697.png)

It assumes (for all knot sequences) that the first and last k
knots are stacked, that is, and
, where k is the order
of the spline in the x or y direction.