Namespace:
Imsl.Stat
Assembly:
ImslCS (in ImslCS.dll) Version: 6.5.0.0
Syntax
C# |
---|
public static double NoncentralF( double f, double df1, double df2, double lambda ) |
Visual Basic (Declaration) |
---|
Public Shared Function NoncentralF ( _ f As Double, _ df1 As Double, _ df2 As Double, _ lambda As Double _ ) As Double |
Visual C++ |
---|
public: static double NoncentralF( double f, double df1, double df2, double lambda ) |
Parameters
- f
- Type: System..::.Double
A double value representing the argument at which the function is to be evaluated. f must be nonnegative.
- df1
- Type: System..::.Double
A double value representing the number of numerator degrees of freedom. df1 must be positive.
- df2
- Type: System..::.Double
A double value representing the number of denominator degrees of freedom. df2 must be positive.
- lambda
- Type: System..::.Double
A double value representing the noncentrality parameter. lambda must be nonnegative.
Return Value
A double value representing the probability density associated with a noncentral F random variable with value f.
Remarks
The noncentral F distribution is a generalization of the F
distribution. If is a noncentral chi-square
random variable with noncentrality parameter
and
degrees of freedom, and
is a chi-square random variable with
degrees
of freedom which is statistically independent of
,
then









With a noncentrality parameter of zero, the noncentral F distribution is the same as the F distribution.
The efficiency of the calculation of the above series is enhanced by:
calculating each term in the series
recursively in terms of either the term
preceding it or the term
following it, andinitializing the sum with the largest series term and adding the
subsequent terms in order of decreasing magnitude.
Special cases:
For :
![\mbox{PDF}(f, \nu_1, \nu_2, \lambda) \;\; = \;\; \Psi \; \Phi_0 \;\; = \;\; \Psi \;
\frac{ \Gamma([\nu_1 + \nu_2]/2) }{ \Gamma(\nu_1/2) }](eqn/eqn_3686.png)
For :
![\mbox{PDF}(f, \nu_1, \nu_2, \lambda) \;\; = \;\;
\frac{ (\nu_1 f)^{\nu_1/2} \; (\nu_2)^{\nu_2/2} \; \Gamma([\nu_1 + \nu_2]/2) }
{ f \; (\nu_1 f \; + \; \nu_2)^{(\nu_1 + \nu_2)/2} \; \Gamma(\nu_1/2) \; \Gamma(\nu_2/2) }](eqn/eqn_3688.png)
For :
![\mbox{PDF}(f, \nu_1, \nu_2, \lambda) \;\; = \;\; \frac{{e^{ - \lambda /2} \;f^{\nu _1 /2\;\; - \;\;1} \;(\nu _1 /\nu _2 )^{\nu _1 /2} \;\Gamma ([\nu _1 \; + \;\nu _2 ]/2)}} {{\;\Gamma (\nu _1 /2)\;\Gamma (\nu _2 /2)}}](eqn/eqn_3690.png)
