Namespace:
Imsl.Math
Assembly:
ImslCS (in ImslCS.dll) Version: 6.5.0.0
Syntax
C# |
---|
[SerializableAttribute] public class CsAkima : Spline |
Visual Basic (Declaration) |
---|
<SerializableAttribute> _ Public Class CsAkima _ Inherits Spline |
Visual C++ |
---|
[SerializableAttribute] public ref class CsAkima : public Spline |
Remarks
Class CsAkima computes a cubic spline
interpolant to a set of data points
for
. The breakpoints of the spline
are the abscissas. Endpoint conditions are automatically determined by
the program; see Akima (1970) or de Boor (1978).
If the data points arise from the values of a smooth, say
, function f, i.e.
, then the error will behave in a
predictable fashion. Let
be the breakpoint
vector for the above spline interpolant. Then, the maximum absolute
error satisfies
![\left\| {f - s} \right\|_{\left[ {\xi_0 ,
\xi_{n-1} } \right]} \le C\left\| f^{(2)}\right\|_{[\xi_0,\xi_{n-1}}
\left| \xi \right|^2](eqn/eqn_1035.png)
where

CsAkima is based on a method by Akima (1970) to combat wiggles in the interpolant. The method is nonlinear; and although the interpolant is a piecewise cubic, cubic polynomials are not reproduced. (However, linear polynomials are reproduced.)