Namespace:
Imsl.Stat
Assembly:
ImslCS (in ImslCS.dll) Version: 6.5.0.0
Syntax
C# |
---|
[SerializableAttribute] public class KaplanMeierEstimates |
Visual Basic (Declaration) |
---|
<SerializableAttribute> _ Public Class KaplanMeierEstimates |
Visual C++ |
---|
[SerializableAttribute] public ref class KaplanMeierEstimates |
Remarks
Class KaplanMeierEstimates computes Kaplan-Meier (or product-limit) estimates of survival probabilities for a sample of failure times that can be right censored or exact times. A survival probability S(t) is defined as 1 - F(t), where F(t) is the cumulative distribution function of the failure times t. Greenwood's estimate of the standard errors of the survival probability estimates are also computed. (See Kalbfleisch and Prentice, 1980, pages 13 and 14.)
Let (,
), for i = 1,..., n
denote the failure censoring times and the censoring codes for the n observations
in a single sample. Here,
is a failure time if
is 0, where
.
Also,
is a right censoring time if
is 1.
Rows in x containing values other than 0 or 1 for
are
ignored. Let the number of observations in the sample that have not failed by time
be denoted by
, where
is an ordered (from smallest to largest) listing of the distinct failure times (censoring
times are omitted). Then the Kaplan-Meier estimate of the survival probabilities is
a step function, which in the interval from
to
(including the lower endpoint) is given by

where denotes the number of failures occurring at time
,
and
is the number of observations that have not failed
prior to
.
Note that one row of x may correspond to more than one failed (or censored)
observation when the frequency option is in effect (see FrequencyColumn). The
Kaplan-Meier estimate of the survival probability prior to time
is 1.0, while the Kaplan-Meier estimate of the survival probability after the
last failure time is not defined.
Greenwood's estimate of the variance of

in the interval from to
is given as

KaplanMeierEstimates computes the single sample estimates of the survival probabilities for all samples of data included in x during a single call. This is accomplished through the stratum column of x, which if present, must contain a distinct code for each sample of observations (see StratumColumn). If a stratum column is not specified, there is no grouping , and all observations are assumed to come from the same sample.
When failures and right-censored observations are tied and the data are to be sorted by KaplanMeierEstimates (Sorted=true is not used), KaplanMeierEstimates assumes that the time of censoring for the tied-censored observations is immediately after the tied failure (within the same sample). When Sorted=true is used, the data are assumed to be sorted from smallest to largest according to the response time column of x within each stratum (see ResponseColumn). Furthermore, a small increment of time is assumed (theoretically) to elapse between the failed and censored observations that are tied (in the same sample). Thus, when Sorted=true is used, the user must sort all of the data in x from smallest to largest according to the response time column (and the stratum column, if set). By appropriate sorting of the observations, the user can handle censored and failed observations that are tied in any manner desired.