Example 1: Determination of an optimum \text{AR}(p) model

This example uses time series LNU03327709 from the US Department of Labor, Bureau of Labor Statistics. It contains the unadjusted special unemployment rate, taken monthly from January 1994 through September 2005. The values 01/2004 - 03/2005 are used by class AutoARIMA for outlier detection and parameter estimation. In this example, method 1, without seasonal adjustment, is chosen to find an appropriate AR(p) model. A forecast is done for the following six months and compared with the actual values 04/2005 - 09/2005.

using System;
using Imsl.Stat;

public class AutoARIMAEx1
{
   public static void Main(String[] args)
   {
      int nOutliers;
      double aic, RSE, constant;
      int[] optimumModel;
      int[,] outlierStatistics;
      double[] outlierForecast, ar, ma;
      double[] psiWeights, probabilityLimits;


      double[] x = 
      {
            12.8, 12.2, 11.9, 10.9, 10.6, 11.3, 11.1, 10.4, 10.0, 9.7, 9.7, 
            9.7, 11.1, 10.5, 10.3, 9.8, 9.8, 10.4, 10.4, 10.0, 9.7, 9.3, 9.6,
            9.7, 10.8, 10.7, 10.3, 9.7, 9.5, 10.0, 10.0, 9.3, 9.0, 8.8, 8.9, 
            9.2, 10.4, 10.0, 9.6, 9.0, 8.5, 9.2, 9.0, 8.6, 8.3, 7.9, 8.0, 
            8.2, 9.3, 8.9, 8.9, 7.7, 7.6, 8.4, 8.5, 7.8, 7.6, 7.3, 7.2, 7.3,
            8.5, 8.2, 7.9, 7.4, 7.1, 7.9, 7.7, 7.2, 7.0, 6.7, 6.8, 6.9, 7.8, 
            7.6, 7.4, 6.6, 6.8, 7.2, 7.2, 7.0, 6.6, 6.3, 6.8, 6.7, 8.1, 7.9, 
            7.6, 7.1, 7.2, 8.2, 8.1, 8.1, 8.2, 8.7, 9.0, 9.3, 10.5, 10.1,
            9.9, 9.4, 9.2, 9.8, 9.9, 9.5, 9.0, 9.0, 9.4, 9.6, 11.0, 10.8, 
            10.4, 9.8, 9.7, 10.6, 10.5, 10.0, 9.8, 9.5, 9.7, 9.6, 10.9, 10.3,
            10.4, 9.3, 9.3, 9.8, 9.8, 9.3, 8.9, 9.1, 9.1, 9.1, 10.2, 9.9, 9.4
      };

      double[] exactForecast = { 8.7, 8.6, 9.3, 9.1, 8.8, 8.5 };

      int[] times = 
      {
         1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 
         20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36,
         37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53,
         54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70,
         71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 
         88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 
         104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 
         117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 
         130, 131, 132, 133, 134, 135
      };

      AutoARIMA autoArima = new AutoARIMA(times, x);
      autoArima.CriticalValue = 3.8;
      autoArima.Compute(5);
      autoArima.Forecast(6);

      nOutliers = autoArima.NumberOfOutliers;
      aic = autoArima.AIC;
      optimumModel = autoArima.GetOptimumModelOrder();
      outlierStatistics = autoArima.GetOutlierStatistics();
      RSE = autoArima.ResidualStandardError;
      outlierForecast = autoArima.GetForecast();
      psiWeights = autoArima.GetPsiWeights();
      probabilityLimits = autoArima.GetDeviations();
      constant = autoArima.Constant;
      ar = autoArima.GetAR();
      ma = autoArima.GetMA();

      Console.Out.WriteLine("\nMethod 1: Automatic AR model selection"
                            + ", no differencing");
      Console.Out.WriteLine(
         "\nOptimum Model: p={0,1:d}, q={1,1:d}, s={2,1:d}, d={3,1:d}",
         optimumModel[0], optimumModel[1], optimumModel[2], optimumModel[3]);
      Console.Out.WriteLine("\nNumber of outliers:{0,3:d}", nOutliers);
      Console.Out.WriteLine();
      Console.Out.WriteLine("Outlier statistics:");
      Console.Out.WriteLine(" Time    Type");
      for (int i = 0; i < nOutliers; i++)
         Console.Out.WriteLine("{0,5:d}{1,8:d}", outlierStatistics[i, 0], 
            outlierStatistics[i, 1]);
      Console.Out.WriteLine("\nAIC:{0,12:f6}", aic);
      Console.Out.WriteLine("RSE:{0,12:f6}", RSE);
      Console.Out.WriteLine();
      Console.Out.WriteLine("      Parameters");
      Console.Out.WriteLine(" constant:{0,12:f6}", constant);
      for (int i = 0; i < ar.Length; i++)
         Console.Out.WriteLine(" ar[{0,1:d}]:{1,15:f6}", i, ar[i]);
      for (int i = 0; i < ma.Length; i++)
         Console.Out.WriteLine(" ma[{0,1:d}]:{1,15:f6}", i, ma[i]);

      Console.Out.WriteLine();
      Console.Out.WriteLine();
      Console.Out.WriteLine("      * * * Forecast Table * * *");
      Console.Out.WriteLine("  Exact   forecast     limits        psi");
      for (int i = 0; i < outlierForecast.Length; i++)
         Console.Out.WriteLine("{0,7:f4}{1,11:f4}{2,11:f4}{3,11:f4}",
                             exactForecast[i], outlierForecast[i],
                             probabilityLimits[i], psiWeights[i]);
   }
}

Output


Method 1: Automatic AR model selection, no differencing

Optimum Model: p=5, q=0, s=1, d=0

Number of outliers:  7

Outlier statistics:
 Time    Type
    8       2
   13       0
   37       3
   85       0
   97       0
  109       0
  121       0

AIC:  371.104666
RSE:    0.359632

      Parameters
 constant:    0.097542
 ar[0]:       0.891871
 ar[1]:      -0.123831
 ar[2]:      -0.138262
 ar[3]:       0.135621
 ar[4]:       0.224111


      * * * Forecast Table * * *
  Exact   forecast     limits        psi
 8.7000     9.1076     0.7049     0.8919
 8.6000     9.0993     0.9445     0.6716
 9.3000     9.4032     1.0565     0.3503
 9.1000     9.5806     1.0849     0.2416
 8.8000     9.5506     1.0982     0.4243
 8.5000     9.3932     1.1382     0.5910

Link to C# source.