The data for this example are generated to follow a GARCH(p,q) process by using a random number generation function sgarch . The data set is analyzed and estimates of sigma, the AR parameters, and the MA parameters are returned. The values of the Log-likelihood function and the Akaike Information Criterion are returned.
using System;
using Imsl.Stat;
using PrintMatrix = Imsl.Math.PrintMatrix;
public class GARCHEx1
{
static private void sgarch(int p, int q, int m, double[] x,
double[] y, double[] z, double[] y0, double[] sigma)
{
int i, j, l;
double s1, s2, s3;
Imsl.Stat.Random rand = new Imsl.Stat.Random(182198625);
rand.Multiplier = 16807;
for (i = 0; i < m + 1000; i++)
z[i] = rand.NextNormal();
l = System.Math.Max(p, q);
l = System.Math.Max(l, 1);
for (i = 0; i < l; i++)
y0[i] = z[i] * x[0];
/* COMPUTE THE INITIAL VALUE OF SIGMA */
s3 = 0.0;
if (System.Math.Max(p, q) >= 1)
{
for (i = 1; i < (p + q + 1); i++)
s3 += x[i];
}
for (i = 0; i < l; i++)
sigma[i] = x[0] / (1.0 - s3);
for (i = l; i < (m + 1000); i++)
{
s1 = 0.0;
s2 = 0.0;
if (q >= 1)
{
for (j = 0; j < q; j++)
s1 += x[j + 1] * y0[i - j - 1] * y0[i - j - 1];
}
if (p >= 1)
{
for (j = 0; j < p; j++)
s2 += x[q + 1 + j] * sigma[i - j - 1];
}
sigma[i] = x[0] + s1 + s2;
y0[i] = z[i] * Math.Sqrt(sigma[i]);
}
/*
* DISCARD THE FIRST 1000 SIMULATED OBSERVATIONS
*/
for (i = 0; i < m; i++)
y[i] = y0[1000 + i];
return ;
}
public static void Main(String[] args)
{
int n, p, q, m;
double[] x = new double[]{1.3, 0.2, 0.3, 0.4};
double[] xguess = new double[]{1.0, 0.1, 0.2, 0.3};
double[] y = new double[1000];
double[] wk1 = new double[2000];
double[] wk2 = new double[2000];
double[] wk3 = new double[2000];
m = 1000;
p = 2;
q = 1;
n = p + q + 1;
sgarch(p, q, m, x, y, wk1, wk2, wk3);
GARCH garch = new GARCH(p, q, y, xguess);
garch.Compute();
Console.Out.WriteLine
("Sigma estimate is " + garch.Sigma.ToString("0.000"));
Console.Out.WriteLine();
new PrintMatrix("AR estimate is ").Print(garch.GetAR());
new PrintMatrix("MR estimate is ").Print(garch.GetMA());
Console.Out.WriteLine("Log-likelihood function value is " +
garch.LogLikelihood.ToString("0.000"));
Console.Out.WriteLine("Akaike Information Criterion value is "
+ garch.Akaike.ToString("0.000"));
}
}
Sigma estimate is 1.692
AR estimate is
0
0 0.244996841351061
1 0.337228450714669
MR estimate is
0
0 0.3095927608719
Log-likelihood function value is -2707.073
Akaike Information Criterion value is 5422.146
Link to C# source.