The data for this example are generated to follow a GARCH(p,q) process by using a random number generation function sgarch . The data set is analyzed and estimates of sigma, the AR parameters, and the MA parameters are returned. The values of the Log-likelihood function and the Akaike Information Criterion are returned.
using System; using Imsl.Stat; using PrintMatrix = Imsl.Math.PrintMatrix; public class GARCHEx1 { static private void sgarch(int p, int q, int m, double[] x, double[] y, double[] z, double[] y0, double[] sigma) { int i, j, l; double s1, s2, s3; Imsl.Stat.Random rand = new Imsl.Stat.Random(182198625); rand.Multiplier = 16807; for (i = 0; i < m + 1000; i++) z[i] = rand.NextNormal(); l = System.Math.Max(p, q); l = System.Math.Max(l, 1); for (i = 0; i < l; i++) y0[i] = z[i] * x[0]; /* COMPUTE THE INITIAL VALUE OF SIGMA */ s3 = 0.0; if (System.Math.Max(p, q) >= 1) { for (i = 1; i < (p + q + 1); i++) s3 += x[i]; } for (i = 0; i < l; i++) sigma[i] = x[0] / (1.0 - s3); for (i = l; i < (m + 1000); i++) { s1 = 0.0; s2 = 0.0; if (q >= 1) { for (j = 0; j < q; j++) s1 += x[j + 1] * y0[i - j - 1] * y0[i - j - 1]; } if (p >= 1) { for (j = 0; j < p; j++) s2 += x[q + 1 + j] * sigma[i - j - 1]; } sigma[i] = x[0] + s1 + s2; y0[i] = z[i] * Math.Sqrt(sigma[i]); } /* * DISCARD THE FIRST 1000 SIMULATED OBSERVATIONS */ for (i = 0; i < m; i++) y[i] = y0[1000 + i]; return ; } public static void Main(String[] args) { int n, p, q, m; double[] x = new double[]{1.3, 0.2, 0.3, 0.4}; double[] xguess = new double[]{1.0, 0.1, 0.2, 0.3}; double[] y = new double[1000]; double[] wk1 = new double[2000]; double[] wk2 = new double[2000]; double[] wk3 = new double[2000]; m = 1000; p = 2; q = 1; n = p + q + 1; sgarch(p, q, m, x, y, wk1, wk2, wk3); GARCH garch = new GARCH(p, q, y, xguess); garch.Compute(); Console.Out.WriteLine ("Sigma estimate is " + garch.Sigma.ToString("0.000")); Console.Out.WriteLine(); new PrintMatrix("AR estimate is ").Print(garch.GetAR()); new PrintMatrix("MR estimate is ").Print(garch.GetMA()); Console.Out.WriteLine("Log-likelihood function value is " + garch.LogLikelihood.ToString("0.000")); Console.Out.WriteLine("Akaike Information Criterion value is " + garch.Akaike.ToString("0.000")); } }
Sigma estimate is 1.692 AR estimate is 0 0 0.244996841351061 1 0.337228450714669 MR estimate is 0 0 0.3095927608719 Log-likelihood function value is -2707.073 Akaike Information Criterion value is 5422.146Link to C# source.