In this example a nonlinear model is fitted. The derivatives are supplied by the user.
using System;
using Imsl.Math;
using Imsl.Stat;
public class NonlinearRegressionEx2 : NonlinearRegression.IDerivative
{
double[] ydata = new double[]{
54.0, 50.0, 45.0, 37.0, 35.0, 25.0, 20.0,
16.0, 18.0, 13.0, 8.0, 11.0, 8.0, 4.0, 6.0};
double[] xdata = new double[]{
2.0, 5.0, 7.0, 10.0, 14.0, 19.0, 26.0, 31.0,
34.0, 38.0, 45.0, 52.0, 53.0, 60.0, 65.0};
bool iend;
int nobs = 15;
public bool f(double[] theta, int iobs, double[] frq, double[] wt, double[] e)
{
if (iobs < nobs)
{
wt[0] = 1.0;
frq[0] = 1.0;
iend = true;
e[0] = ydata[iobs] - theta[0] * Math.Exp(theta[1] * xdata[iobs]);
}
else
{
iend = false;
}
return iend;
}
public bool derivative(double[] theta, int iobs, double[] frq,
double[] wt, double[] de)
{
if (iobs < nobs)
{
wt[0] = 1.0;
frq[0] = 1.0;
iend = true;
de[0] = - Math.Exp(theta[1] * xdata[iobs]);
de[1] = (- theta[0]) * xdata[iobs] *
Math.Exp(theta[1] * xdata[iobs]);
}
else
{
iend = false;
}
return iend;
}
public static void Main(String[] args)
{
int nparm = 2;
double[] theta = new double[]{60.0, - 0.03};
NonlinearRegression regression = new NonlinearRegression(nparm);
regression.Guess = theta;
double[] coef = regression.Solve(new NonlinearRegressionEx2());
Console.Out.WriteLine("The computed regression coefficients are {" +
coef[0] + ", " + coef[1] + "}");
Console.Out.WriteLine("The computed rank is " + regression.Rank);
Console.Out.WriteLine("The degrees of freedom for error are " +
regression.DFError);
Console.Out.WriteLine("The sums of squares for error is " +
regression.GetSSE());
new PrintMatrix("R from the QR decomposition ").Print(regression.R);
}
}
The computed regression coefficients are {58.6065629254192, -0.0395864472775247}
The computed rank is 2
The degrees of freedom for error are 13
The sums of squares for error is 49.4592998624722
R from the QR decomposition
0 1
0 1.87385998422826 1139.92837730064
1 0 1139.79757620697
Link to C# source.