ellipticIntegralK¶
Evaluates the complete elliptic integral of the kind K(x).
Synopsis¶
ellipticIntegralK (x)
Required Arguments¶
- float
x
(Input) - Argument for which the function value is desired.
Return Value¶
The complete elliptic integral \(K(x)\).
Description¶
The complete elliptic integral of the first kind is defined to be
\[K(x) = \int_0^{\pi/2} \frac{d \theta}{\left[1 - x \sin^2 \theta\right]^{1/2}}
\text{ for } 0 \leq x < 1\]
The argument x must satisfy \(0\leq x<1\); otherwise,
ellipticIntegralK
returns machine(2), the largest representable
floating-point number. For more information, see the description for
machine.
The function \(K(x)\) is computed using the routine ellipticIntegralRF and the relation \(K(x)=R_F(0,1-x,1)\).