poissonCdf¶
Evaluates the Poisson distribution function.
Synopsis¶
poissonCdf (k, theta)
Required Arguments¶
- int
k
(Input) - Argument for which the Poisson distribution function is to be evaluated.
- float
theta
(Input) - Mean of the Poisson distribution. Argument
theta
must be positive.
Return Value¶
The probability that a Poisson random variable takes a value less than or equal to k.
Description¶
The function poissonCdf
evaluates the distribution function of a Poisson
random variable with parameter theta
. The mean of the Poisson random
variable, theta
, must be positive. The probability function (with θ =
theta
) is
f(x)=e−qθx/x!,forx=0,1,2,…
The individual terms are calculated from the tails of the distribution to
the mode of the distribution and summed. The function poissonCdf
uses
the recursive relationship
f(x+1)=f(x)q/(x+1),forx=0,1,2,…,k−1
with f(0)=e−q.

Figure 9.24 — Plot of Fp(k,θ)
Example¶
Suppose X is a Poisson random variable with θ=10. This example evaluates the probability that X≤7.
from __future__ import print_function
from numpy import *
from pyimsl.math.poissonCdf import poissonCdf
k = 7
theta = 10.0
p = poissonCdf(k, theta)
print("Pr(x <= 7) = %6.4f" % (p))
Output¶
Pr(x <= 7) = 0.2202
Informational Errors¶
IMSL_LESS_THAN_ZERO |
The input argument, k, is less than zero. |