complementaryNonCentralFCdf

Evaluates the complementary noncentral F cumulative distribution function (CDF).

Synopsis

complementaryNonCentralFCdf (f, dfNumerator, dfDenominator, t_lambda)

Required Arguments

float f (Input)
Argument for which the complementary noncentral F cumulative distribution function is to be evaluated. f must be non-negative.
float dfNumerator (Input)
Numerator degrees of freedom of the complementary noncentral F distribution. dfNumerator must be positive.
float dfDenominator (Input)
Denominator degrees of freedom of the complementary noncentral F distribution. dfDenominator must be positive.
float t_lambda (Input)
Noncentrality parameter. t_lambda must be non-negative.

Return Value

The probability that a noncentral F random variable takes a value greater than f.

Description

If X is a noncentral chi-square random variable with noncentrality parameter λ and ν1 degrees of freedom, and Y is a chi-square random variable with ν2 degrees of freedom which is statistically independent of X, then

F=(X/ν1)/(Y/ν2)

is a noncentral F-distributed random variable whose CDF is given by:

F(f|ν1,ν2,λ)=j=0cj

where:

cj=ωjIx(ν12+j,ν22)
ωj=eλ/2(λ/2)j/j!=λ2jωj1
Ix(a,b)incomplete beta function ratioBx(a,b)B(a,b)
Bx(a,b)incomplete beta functionx0ta1(1t)b1dt
=xaj=0Γ(j+1b)(a+j)Γ(1b)j!xj
x=v1f(v2+v1f)<==>f=v2xv1(1x)
B(a,b)=B1(a,b)=Γ(a)Γ(b)Γ(a+b)
Ix(a+1,b)=Ix(a,b)Tx(a,b)
Tx(a,b)=Γ(a+b)Γ(a+1)Γ(b)xa(1x)b=Tx(a1,b)a1+bax

and Γ (⋅) is the gamma function. The above series expansion for the noncentral F CDF, denoted by F(⋅), was taken from Butler and Paolella (1999) (see Paolella.pdf), with the correction for the recursion relation given below:

Ix(a+1,b)=Ix(a,b)Tx(a,b)

extracted from the AS 63 algorithm for calculating the incomplete beta function as described by Majumder and Bhattacharjee (1973).

The series approximation of the complementary (cmp) noncentral F CDF, denoted by F(⋅), is obtainable by using the following identities:

j=0ωj=1
I1x(b,a)=1Ix(a,b)
I1x(b,a+1)=1Ix(a+1,b)=1Ix(a,b)+Tx(a,b)=I1x(b,a)+Tx(a,b)

Thus:

¯F(f|v1,v2,λ)=1j=0cj=j=0ωj[1Ix(v12+j,v22)]=j=0ωjI1x(v22,v12+j)

The correspondence between the arguments of function complementaryNonCentralFCdf and the variables in the above equations is as follows: ν1 = dfNumerator, ν2 = dfDenominator, λ = t_lambda, and f = f.

Also, we can use the above expansion of ¯F(f|v1,v2,λ) and the identities:

I1x(b,a+1)=I1x(b,a)+Tx(a,b)
Tx(a,b)=Γ(a+b)Γ(a+1)Γ(b)xa(1x)b=Tx(a1,b)a1+bax

to recursively calculate ¯F(f|ν1,ν2,λ).

For λ=0, the noncentral F distribution is the same as the F distribution.

Example

This example traces out a portion of a complementary noncentral F cumulative distribution function with parameters dfNumerator = 100, dfDenominator = 10, and t_lambda = 10.

from __future__ import print_function
from numpy import *
from pyimsl.stat.complementaryNonCentralFCdf import complementaryNonCentralFCdf

f = [0., .4, .8, 1.2, 1.6, 2.0, 2.8, 4.0]
df_numerator = 100.
df_denominator = 10.
lamb = 10.

print("df_numerator:      %4.0f" % (df_numerator))
print("df_denominator:    %4.0f" % (df_denominator))
print("lambda:            %4.0f\n" % (lamb))
print("    f      cmpCDF(f)")

for i in range(0, 8):
    cmpcdfv = complementaryNonCentralFCdf(f[i], df_numerator, df_denominator,
                                          lamb)
    print(" %5.1f  %12.4e" % (f[i], cmpcdfv))

Output

df_numerator:       100
df_denominator:      10
lambda:              10

    f      cmpCDF(f)
   0.0    1.0000e+00
   0.4    9.9511e-01
   0.8    7.9737e-01
   1.2    4.7886e-01
   1.6    2.6615e-01
   2.0    1.4959e-01
   2.8    5.2875e-02
   4.0    1.4642e-02