discreteUniformPdf¶
Evaluates the discrete uniform probability density function (PDF).
Synopsis¶
discreteUniformPdf(ix, n)
Required Arguments¶
- int
ix
(Input) - Argument for which the discrete uniform PDF is to be evaluated.
ix
must be positive. - int
n
(Input) - Scale parameter.
n
must be positive.
Return Value¶
The probability that a random variable from a discrete uniform distribution
with scale parameter n
will be equal to ix
. A value of NaN is
returned if an input value is in error.
Description¶
The function discreteUniformPdf
evaluates the discrete uniform
probability density function (PDF) with scale parameter n
, defined
\[p = f(I|N) = \frac{1}{N}, \phantom{...} 1 \leq I \leq N\]
where I = ix
and N = n
. As a convenience to the user,
discreteUniformPdf
accepts values of \(I>N\), returning \(p= 0\).
discreteUniformPdf
returns an error message for values of \(I\leq
0\).
Example¶
In this example, we evaluate the discrete uniform PDF at ix
= 3, n
=
5.
from __future__ import print_function
from numpy import *
from pyimsl.stat.discreteUniformPdf import discreteUniformPdf
ix = 3
n = 5
p = discreteUniformPdf(ix, n)
print("The probability density of a discrete uniform")
print("random variable with scale parameter n = %1i" % n)
print("and value ix = %1i is %6.4f" % (ix, p))
Output¶
The probability density of a discrete uniform
random variable with scale parameter n = 5
and value ix = 3 is 0.2000