exponentialInverseCdf¶
Evaluates the inverse of the exponential cumulative distribution function (CDF).
Synopsis¶
exponentialInverseCdf (p, b)
Required Arguments¶
- float
p
(Input) - Probability for which the inverse of the exponential CDF is to be
evaluated.
p
must lie in the closed interval [0, 1]. - float
b
(Input) - Scale parameter of the exponential CDF.
b
must be positive.
Return Value¶
Function value, the value of the inverse of the exponential CDF. A value of NaN is returned if an input value is in error.
Description¶
The function exponentialInverseCdf(p, b)
evaluates \(F^{-1}(p|b)\),
the inverse CDF of an exponential random variable with probability argument
p = p
and scale parameter b = b
:
\[F^{-1}(p∣b) = -b \log(1-p)\]
The probability that an exponential random variable takes a value less than
or equal to the returned value is p
.
Example¶
In this example, we evaluate the exponential inverse CDF at p
= 0.8647,
b
= 1.0.:
from __future__ import print_function
from numpy import *
from pyimsl.stat.exponentialInverseCdf import exponentialInverseCdf
p = 0.8647
b = 1.0
x = exponentialInverseCdf(p, b)
print("The probability that exponential random variable X with")
print("scale parameter b = %3.1f is less than or equal to %6.4f" % (b, x))
print("is %6.4f" % p)
Output¶
The probability that exponential random variable X with
scale parameter b = 1.0 is less than or equal to 2.0003
is 0.8647