geometricPdf¶
Evaluates the discrete geometric probability density function (PDF).
Synopsis¶
geometricPdf (ix, pin)
Required Arguments¶
- int
ix
(Input) - Argument for which the discrete geometric PDF is to be evaluated.
ix
must be non-negative. - float
pin
(Input) - Probability parameter of the discrete geometric PDF (the probability of
success for each independent trial).
pin
must be in the open interval (0, 1).
Return Value¶
The probability that a discrete geometric random variable having parameter
pin
will be equal to ix
. A value of NaN is returned if an input
value is in error.
Description¶
The function geometricPdf
evaluates the discrete geometric probability
density function (PDF), defined
\[f(I|p) = p(1-p)^I, \phantom{...} 0 < p < 1\]
where the return value f(I∣p) is the probability that I =
ix
trials would be observed before observing a success, and input
parameter p = pin
is the probability of success for each independent
trial.
Example¶
In this example, we evaluate the discrete geometric PDF at ix
= 3,
pin
= 0.25.
from __future__ import print_function
from numpy import *
from pyimsl.stat.geometricPdf import geometricPdf
ix = 3
pin = 0.25
p = geometricPdf(ix, pin)
print("The probability density of a discrete geometric")
print("random variable with probability parameter pin = %4.2f" % pin)
print("and value ix = %1i is %8.6f" % (ix, p))
Output¶
The probability density of a discrete geometric
random variable with probability parameter pin = 0.25
and value ix = 3 is 0.105469