lognormalPdf¶
Evaluates the lognormal probability density function (PDF).
Synopsis¶
lognormalPdf(x, amu, sigma)
Required Arguments¶
- float
x
(Input) - Argument for which the lognormal PDF is to be evaluated.
x
must be non-negative. - float
amu
(Input) - Location parameter of the lognormal PDF.
- float
sigma
(Input) - Shape parameter of the lognormal PDF.
sigma
must be positive.
Return Value¶
The probability density of a lognormally distributed random variable with
value x
, location parameter amu
, and shape parameter sigma
. A
value of NaN is returned if an input value is in error.
Description¶
The function lognormalPdf
evaluates the lognormal probability density
function (PDF), defined as
\[f(x|\mu,\sigma) = \frac{1}{x \sigma \sqrt{2\pi}}
e^{-\frac{[\log(x)\mu]^2}{2\sigma^2}}\]
Example¶
In this example, we evaluate the PDF at x
= 1.0, amu
= 0.0,
sigma
= 0.5.
from __future__ import print_function
from numpy import *
from pyimsl.stat.lognormalPdf import lognormalPdf
x = 1.0
amu = 0.0
sigma = 0.5
pdfv = lognormalPdf(x, amu, sigma)
print("The probability density of lognormal random variable X")
print("with location parameter amu = %3.1f, " % amu)
print("shape parameter sigma = %3.1f, " % sigma)
print("and value x = %3.1f is %6.4f" % (x, pdfv))
Output¶
The probability density of lognormal random variable X
with location parameter amu = 0.0,
shape parameter sigma = 0.5,
and value x = 1.0 is 0.7979