covariances

   more...
Computes the sample variance-covariance or correlation matrix.
Synopsis
#include <imsl.h>
float *imsl_f_covariances (int n_observations, int n_variables, float x[], , 0)
The type double function is imsl_d_covariances.
Required Arguments
int n_observations (Input)
The number of observations.
int n_variables (Input)
The number of variables.
float x[] (Input)
Array of size n_observations × n_variables containing the matrix of data.
Return Value
If no optional arguments are used, imsl_f_covariances returns a pointer to an n_variables × n_variables matrix containing the sample variance-covariance matrix of the observations. The rows and columns of this matrix correspond to the columns of x.
Synopsis with Optional Arguments
#include <imsl.h>
float *imsl_f_covariances (int n_observations, int n_variables, float x[],
IMSL_X_COL_DIM, int x_col_dim,
IMSL_VARIANCE_COVARIANCE_MATRIX,
IMSL_CORRECTED_SSCP_MATRIX,
IMSL_CORRELATION_MATRIX,
IMSL_STDEV_CORRELATION_MATRIX,
IMSL_MEANS, float **p_means,
IMSL_MEANS_USER, float means[],
IMSL_COVARIANCE_COL_DIM, int covariance_col_dim,
IMSL_RETURN_USER, float covariance[],
0)
Optional Arguments
IMSL_X_COL_DIM, int x_col_dim (Input)
The column dimension of array x.
Default: x_col_dim = n_variables
IMSL_VARIANCE_COVARIANCE_MATRIX, or
IMSL_CORRECTED_SSCP_MATRIX, or
IMSL_CORRELATION_MATRIX, or
IMSL_STDEV_CORRELATION_MATRIX
Exactly one of these options can be used to specify the type of matrix to be computed.
Keyword
Type of Matrix
IMSL_VARIANCE_COVARIANCE_MATRIX
variance-covariance matrix (default)
IMSL_CORRECTED_SSCP_MATRIX
corrected sums of squares and crossproducts matrix
IMSL_CORRELATION_MATRIX
correlation matrix
IMSL_STDEV_CORRELATION_MATRIX
correlation matrix except for the diagonal elements which are the standard deviations
IMSL_MEANS, float **p_means (Output)
The address of a pointer to the array containing the means of the variables in x. The components of the array correspond to the columns of x. On return, the pointer is initialized (through a memory allocation request to malloc), and the array is stored there. Typically, float *p_means is declared; &p_means is used as an argument to this function; and imsl_free(p_means) is used to free this array.
IMSL_MEANS_USER, float means[] (Output)
Calculate the n_variables means and store them in the memory provided by the user. The elements of means correspond to the columns of x.
IMSL_COVARIANCE_COL_DIM, int covariance_col_dim (Input)
The column dimension of array covariance, if IMSL_RETURN_USER is specified, or the column dimension of the return value otherwise.
Default: covariance_col_dim = n_variables
IMSL_RETURN_USER, float covariance[] (Output)
If specified, the output is stored in the array covariance of size n_variables × n_variables provided by the user.
Description
The function imsl_f_covariances computes estimates of correlations, covariances, or sums of squares and crossproducts for a data matrix x. The means, (corrected) sums of squares, and (corrected) sums of crossproducts are computed using the method of provisional means. Let
denote the mean based on i observations for the k-th variable, and let cjki denote the sum of crossproducts (or sum of squares if j = k) based on i observations. Then, the method of provisional means finds new means and sums of crossproducts as follows:
The means and crossproducts are initialized as:
where p denotes the number of variables. Letting xk,i+1 denote the k-th variable on observation i + 1, each new observation leads to the following updates for
and cjki using update constant ri+1:
Usage Notes
The function imsl_f_covariances uses the following definition of a sample mean:
where n is the number of observations. The following formula defines the sample covariance, sj k, between variables j and k:
The sample correlation between variables j and k, rjk, is defined as follows:
Examples
Example 1
The first example illustrates the use of imsl_f_covariances for the first 50 observations in the Fisher iris data (Fisher 1936). Note in this example that the first variable is constant over the first 50 observations.
 
#include <imsl.h>
 
#define N_VARIABLES 5
#define N_OBSERVATIONS 50
 
int main()
{
float *covariances;
float x[] = {1.0, 5.1, 3.5, 1.4, .2, 1.0, 4.9, 3.0, 1.4, .2,
1.0, 4.7, 3.2, 1.3, .2, 1.0, 4.6, 3.1, 1.5, .2,
1.0, 5.0, 3.6, 1.4, .2, 1.0, 5.4, 3.9, 1.7, .4,
1.0, 4.6, 3.4, 1.4, .3, 1.0, 5.0, 3.4, 1.5, .2,
1.0, 4.4, 2.9, 1.4, .2, 1.0, 4.9, 3.1, 1.5, .1,
1.0, 5.4, 3.7, 1.5, .2, 1.0, 4.8, 3.4, 1.6, .2,
1.0, 4.8, 3.0, 1.4, .1, 1.0, 4.3, 3.0, 1.1, .1,
1.0, 5.8, 4.0, 1.2, .2, 1.0, 5.7, 4.4, 1.5, .4,
1.0, 5.4, 3.9, 1.3, .4, 1.0, 5.1, 3.5, 1.4, .3,
1.0, 5.7, 3.8, 1.7, .3, 1.0, 5.1, 3.8, 1.5, .3,
1.0, 5.4, 3.4, 1.7, .2, 1.0, 5.1, 3.7, 1.5, .4,
1.0, 4.6, 3.6, 1.0, .2, 1.0, 5.1, 3.3, 1.7, .5,
1.0, 4.8, 3.4, 1.9, .2, 1.0, 5.0, 3.0, 1.6, .2,
1.0, 5.0, 3.4, 1.6, .4, 1.0, 5.2, 3.5, 1.5, .2,
1.0, 5.2, 3.4, 1.4, .2, 1.0, 4.7, 3.2, 1.6, .2,
1.0, 4.8, 3.1, 1.6, .2, 1.0, 5.4, 3.4, 1.5, .4,
1.0, 5.2, 4.1, 1.5, .1, 1.0, 5.5, 4.2, 1.4, .2,
1.0, 4.9, 3.1, 1.5, .2, 1.0, 5.0, 3.2, 1.2, .2,
1.0, 5.5, 3.5, 1.3, .2, 1.0, 4.9, 3.6, 1.4, .1,
1.0, 4.4, 3.0, 1.3, .2, 1.0, 5.1, 3.4, 1.5, .2,
1.0, 5.0, 3.5, 1.3, .3, 1.0, 4.5, 2.3, 1.3, .3,
1.0, 4.4, 3.2, 1.3, .2, 1.0, 5.0, 3.5, 1.6, .6,
1.0, 5.1, 3.8, 1.9, .4, 1.0, 4.8, 3.0, 1.4, .3,
1.0, 5.1, 3.8, 1.6, .2, 1.0, 4.6, 3.2, 1.4, .2,
1.0, 5.3, 3.7, 1.5, .2, 1.0, 5.0, 3.3, 1.4, .2};
 
covariances = imsl_f_covariances (N_OBSERVATIONS, N_VARIABLES, x, 0);
imsl_f_write_matrix ("The default case: variances/covariances",
N_VARIABLES, N_VARIABLES, covariances,
IMSL_PRINT_UPPER,
0);
}
Output
 
The default case: variances/covariances
1 2 3 4 5
1 0.0000 0.0000 0.0000 0.0000 0.0000
2 0.1242 0.0992 0.0164 0.0103
3 0.1437 0.0117 0.0093
4 0.0302 0.0061
5 0.0111
Example 2
This example illustrates the use of some optional arguments in imsl_f_covariances. Once again, the first 50 observations in the Fisher iris data are used.
 
#include <imsl.h>
 
#define N_VARIABLES 5
#define N_OBSERVATIONS 50
 
int main()
{
char *title;
float *means, *correlations;
float x[] = {1.0, 5.1, 3.5, 1.4, .2, 1.0, 4.9, 3.0, 1.4, .2,
1.0, 4.7, 3.2, 1.3, .2, 1.0, 4.6, 3.1, 1.5, .2,
1.0, 5.0, 3.6, 1.4, .2, 1.0, 5.4, 3.9, 1.7, .4,
1.0, 4.6, 3.4, 1.4, .3, 1.0, 5.0, 3.4, 1.5, .2,
1.0, 4.4, 2.9, 1.4, .2, 1.0, 4.9, 3.1, 1.5, .1,
1.0, 5.4, 3.7, 1.5, .2, 1.0, 4.8, 3.4, 1.6, .2,
1.0, 4.8, 3.0, 1.4, .1, 1.0, 4.3, 3.0, 1.1, .1,
1.0, 5.8, 4.0, 1.2, .2, 1.0, 5.7, 4.4, 1.5, .4,
1.0, 5.4, 3.9, 1.3, .4, 1.0, 5.1, 3.5, 1.4, .3,
1.0, 5.7, 3.8, 1.7, .3, 1.0, 5.1, 3.8, 1.5, .3,
1.0, 5.4, 3.4, 1.7, .2, 1.0, 5.1, 3.7, 1.5, .4,
1.0, 4.6, 3.6, 1.0, .2, 1.0, 5.1, 3.3, 1.7, .5,
1.0, 4.8, 3.4, 1.9, .2, 1.0, 5.0, 3.0, 1.6, .2,
1.0, 5.0, 3.4, 1.6, .4, 1.0, 5.2, 3.5, 1.5, .2,
1.0, 5.2, 3.4, 1.4, .2, 1.0, 4.7, 3.2, 1.6, .2,
1.0, 4.8, 3.1, 1.6, .2, 1.0, 5.4, 3.4, 1.5, .4,
1.0, 5.2, 4.1, 1.5, .1, 1.0, 5.5, 4.2, 1.4, .2,
1.0, 4.9, 3.1, 1.5, .2, 1.0, 5.0, 3.2, 1.2, .2,
1.0, 5.5, 3.5, 1.3, .2, 1.0, 4.9, 3.6, 1.4, .1,
1.0, 4.4, 3.0, 1.3, .2, 1.0, 5.1, 3.4, 1.5, .2,
1.0, 5.0, 3.5, 1.3, .3, 1.0, 4.5, 2.3, 1.3, .3,
1.0, 4.4, 3.2, 1.3, .2, 1.0, 5.0, 3.5, 1.6, .6,
1.0, 5.1, 3.8, 1.9, .4, 1.0, 4.8, 3.0, 1.4, .3,
1.0, 5.1, 3.8, 1.6, .2, 1.0, 4.6, 3.2, 1.4, .2,
1.0, 5.3, 3.7, 1.5, .2, 1.0, 5.0, 3.3, 1.4, .2};
 
correlations = imsl_f_covariances (N_OBSERVATIONS,
N_VARIABLES-1, x+1,
IMSL_STDEV_CORRELATION_MATRIX,
IMSL_X_COL_DIM, N_VARIABLES,
IMSL_MEANS, &means,
0);
imsl_f_write_matrix ("Means\n", 1, N_VARIABLES-1, means, 0);
title = "Correlations with Standard Deviations on the Diagonal\n";
imsl_f_write_matrix (title, N_VARIABLES-1, N_VARIABLES-1,
correlations, IMSL_PRINT_UPPER,
0);
}
Output
 
Means
 
1 2 3 4
5.006 3.428 1.462 0.246
 
Correlations with Standard Deviations on the Diagonal
 
1 2 3 4
1 0.3525 0.7425 0.2672 0.2781
2 0.3791 0.1777 0.2328
3 0.1737 0.3316
4 0.1054
Warning Errors
IMSL_CONSTANT_VARIABLE
Correlations are requested, but the observations on one or more variables are constant. The corresponding correlations are set to NaN.