IMSLS_STAT, float*cvmstat (Output) The Cramer-von Mises statistic.
IMSLS_N_MISSING, int*nmiss (Output) The number of missing observations.
Description
Given a data sample {Xi, i=1 .. n}, where n = nobs and Xi = x[i-1], function imsls_f_cvm_normality_test computes the Cramer-von Mises (CvM) normality statistic W = cvmstat and the corresponding Return Value (p-value) P=P == {probability that a normally distributed n element sample would have a CvM statistic > W}. If P is sufficiently small (e.g. P < .05), then the CvM test indicates that the null hypothesis that the data sample is normally-distributed should be rejected. W is calculated:
Where is the cumulative distribution function of standard normal N(0,1) distribution, , and and s are the sample mean and standard deviation respectively. P is calculated by first transforming W to an “n-adjusted” statistic W*:
and then calculating P in terms of W* using a parabolic approximation taken from Table 4.9 in Stephens (1986).
Example
This example is taken from Conover (1980, pages 364 and 195). The data consists of 50 two digit numbers taken from a telephone book. The CvM test fails to reject the null hypothesis of normality at the .05 level of significance.