Chapter 9: Special Functions

beta

Evaluates the real beta function β(x, y).

Synopsis

#include <imsl.h>

float imsl_f_beta (float x, float y)

The type double procedure is imsl_d_beta.

Required Arguments

float x   (Input)
Point at which the beta function is to be evaluated. It must be positive.

float y   (Input)
Point at which the beta function is to be evaluated. It must be positive.

Return Value

The value of the beta function β (x, y). If no result can be computed, NaN is returned.

Description

The beta function, β (x, y), is defined to be

The beta function requires that x > 0 and y > 0. It underflows for large arguments.

Figure 9- 5   Plot of β(x,y)

Example

Evaluate the beta function β (0.5, 0.2).

#include <imsl.h>

main()
{
    float       x = 0.5;
    float       y = 0.2;
    float       ans;

    ans = imsl_f_beta(x, y);
    printf("beta(%f,%f) = %f\n", x, y, ans);
}

Output

beta(0.500000,0.200000) = 6.268653

Alert Errors

IMSL_BETA_UNDERFLOW                            The arguments must not be so large that the result underflows.

Fatal Errors

IMSL_ZERO_ARG_OVERFLOW                     One of the arguments is so close to zero that the result overflows.


Visual Numerics, Inc.
Visual Numerics - Developers of IMSL and PV-WAVE
http://www.vni.com/
PHONE: 713.784.3131
FAX:713.781.9260