Chapter 2: Eigensystem Analysis

.p>.CMCH2.DOC!GENEIG;geneig

Computes the generalized eigenexpansion of a system Ax = λBx, with A and B real.

Synopsis

#include <imsl.h>

void imsl_f_geneig (int n, float *a, float *b, f_complex *alpha, float *beta, ..., 0)

The double analogue is imsl_d_geneig.

Required Arguments

int n   (Input)
Number of rows and columns in A and B.

float *a  (Input)
Array of size n × n containing the coefficient matrix A.

float *b   (Input)
Array of size n × n containing the coefficient matrix B.

f_complex *alpha   (Output)
Vector of size n containing scalars αi. If βi 0, λi = αi/βi for
i = 0, , n 1 are the eigenvalues of the system.

float *beta   (Output)
Vector of size n.

Synopsis with Optional Arguments

#include <imsl.h>

void imsl_f_geneig (int n, float *a, float *b,
IMSL_VECTORS, f_complex **evec,
IMSL_VECTORS_USER, f_complex evecu[],
IMSL_A_COL_DIM, int a_col_dim,
IMSL_B_COL_DIM, int b_col_dim,
IMSL_EVECU_COL_DIM, int evecu_col_dim,
0)

Optional Arguments

IMSL_VECTORS, f_complex **evec   (Output)
The address of a pointer to an array of size n × n containing eigenvectors of the problem. Each vector is normalized to have Euclidean length equal to the value one. On return, the necessary space is allocated by the function. Typically, f_complex *evec is declared, and &evec is used as an argument.

IMSL_VECTORS_USER, f_complex evecu[]   (Output)
Compute eigenvectors of the matrix. An array of size n × n containing the matrix of generalized eigenvectors is returned in the space evecu. Each vector is normalized to have Euclidean length equal to the value one.

IMSL_A_COL_DIM, int a_col_dim   (Input)
The column dimension of A.
Default: a_col_dim = n

IMSL_B_COL_DIM, int b_col_dim   (Input)
The column dimension of B.
Default: b_col_dim = n.

IMSL_EVECU_COL_DIM, int evecu_col_dim   (Input)
The column dimension of evecu.
Default: evecu_col_dim = n

Description

The function imsl_f_geneig uses the QZ algorithm to compute the eigenvalues and eigenvec­tors of the generalized eigensystem Ax = λBx, where A and B are real matrices of order n. The eigenvalues for this problem can be infinite, so α and β are returned instead of λ. If β is nonzero, λ = α/β.

The first step of the QZ algorithm is to simultaneously reduce A to upper-Hessenberg form and B to upper-triangular form. Then, orthogonal transformations are used to reduce A to quasi-upper-­triangular form while keeping B upper triangular. The generalized eigenvalues and eigenvectors for the reduced problem are then computed.

The function imsl_f_geneig is based on the QZ algorithm due to Moler and Stewart (1973), as implemented by the EISPACK routines QZHES, QZIT and QZVAL; see Garbow et al. (1977).

Examples

Example 1

In this example, the eigenvalue, λ, of system Ax = λBx is computed, where

#include <imsl.h>


main()

{

        int             n = 3;

        f_complex       alpha[3];

        float           beta[3];

        int             i;

        f_complex       eval[3];

        float           a[] = {1.0, 0.5, 0.0,

                              -10.0, 2.0, 0.0,

                               5.0, 1.0, 0.5};

        float           b[] = {0.5, 0.0, 0.0,

                               3.0, 3.0, 0.0,

                               4.0, 0.5, 1.0};


                                /* Compute eigenvalues */


        imsl_f_geneig (n, a, b, alpha, beta, 0);

 

        for (i=0; i<n; i++)

                if (beta[i] != 0.0)

                        eval[i] = imsl_c_div(alpha[i],

                                imsl_cf_convert(beta[i], 0.0));

                else

                        printf ("Infinite eigenvalue\n");


                                /* Print eigenvalues */


        imsl_c_write_matrix ("Eigenvalues", 1, n, eval, 0);

}

Output

                             Eigenvalues

                    1                      2                      3

(     0.833,    1.993)  (    0.833,   -1.993)  (    0.500,    0.000)

Example 2

This example finds the eigenvalues and eigenvectors of the same eigensystem given in the last example.

#include <imsl.h>

 

main()

{

        int             n = 3;

        f_complex       alpha[3];

        float           beta[3];

        int             i;

        f_complex       eval[3];

        f_complex      *evec;

        float           a[] = {1.0, 0.5, 0.0,

                              -10.0, 2.0, 0.0,

                               5.0, 1.0, 0.5};

        float           b[] = {0.5, 0.0, 0.0,

                               3.0, 3.0, 0.0,

                               4.0, 0.5, 1.0};

 

        imsl_f_geneig (n, a, b, alpha, beta,

                IMSL_VECTORS, &evec,

                0);

 

        for (i=0; i<n; i++)

                if (beta[i] != 0.0)

                        eval[i] = imsl_c_div(alpha[i],

                                imsl_cf_convert(beta[i], 0.0));

                else

                        printf ("Infinite eigenvalue\n");

 

                                /* Print eigenvalues */

 

        imsl_c_write_matrix ("Eigenvalues", 1, n, eval, 0);

 

                                /* Print eigenvectors */

 

        imsl_c_write_matrix ("Eigenvectors", n, n, evec, 0);

}

Output

                               Eigenvalues

                      1                        2                        3

(     0.833,     1.993)  (     0.833,    -1.993)  (     0.500,    -0.000)

 

                                Eigenvectors

                        1                       2                       3

1  (    -0.197,    0.150)  (    -0.197,   -0.150)  (   -0.000,     0.000)

2  (    -0.069,   -0.568)  (    -0.069,    0.568)  (   -0.000,     0.000)

3  (     0.782,    0.000)  (     0.782,    0.000)  (    1.000,     0.000)


Visual Numerics, Inc.
Visual Numerics - Developers of IMSL and PV-WAVE
http://www.vni.com/
PHONE: 713.784.3131
FAX:713.781.9260