Integrates a function, which may have endpoint singularities, using a globally adaptive scheme based on Gauss-Kronrod rules.
#include <imsl.h>
float imsl_f_int_fcn_sing (float fcn(), float a, float b, …, 0)
The type double function is imsl_d_int_fcn_sing.
float fcn
(float
x) (input)
User-supplied function to be integrated.
float a
(Input)
Lower limit of integration.
float b
(Input)
Upper limit of integration.
An estimate of

If no value can be computed, NaN is returned.
#include <imsl.h>
float
imsl_f_int_fcn_sing (float
fcn(),
float
a,
float
b,
IMSL_ERR_ABS, float
err_abs,
IMSL_ERR_REL, float
err_rel,
IMSL_ERR_EST, float
*err_est,
IMSL_MAX_SUBINTER, int
max_subinter,
IMSL_N_SUBINTER, int
*n_subinter,
IMSL_N_EVALS, int
*n_evals,
IMSL_FCN_W_DATA,
float
fcn(),
void *data,
0)
IMSL_ERR_ABS, float err_abs
(Input)
Absolute accuracy desired.
Default: 
where ɛ is the machine precision
IMSL_ERR_REL, float err_rel
(Input)
Relative accuracy desired.
Default: 
where ɛ is the machine precision
IMSL_ERR_EST, float *err_est
(Output)
Address to store an estimate of the absolute value of the error.
IMSL_MAX_SUBINTER, int
max_subinter (Input)
Number of subintervals allowed.
Default: max_subinter = 500
IMSL_N_SUBINTER, int
*n_subinter (Output)
Address to store the number of
subintervals generated.
IMSL_N_EVALS, int *n_evals
(Output)
Address to store the number of evaluations of fcn.
IMSL_FCN_W_DATA, float fcn
(float x, void *data),
void
*data (Input)
User supplied function to be integrated, which also
accepts a pointer to data that is supplied by the user. data is a pointer to
the data to be passed to the user-supplied function. See the
Introduction, Passing Data to User-Supplied Functions at the beginning of
this manual for more details.
This function is designed to handle functions with endpoint singularities. However, the performance on functions that are well-behaved at the endpoints is also quite good.
The function imsl_f_int_fcn_sing is a general-purpose integrator that uses a globally adaptive scheme in order to reduce the absolute error. It subdivides the interval [a, b] and uses a 21-point Gauss-Kronrod rule to estimate the integral over each subinterval. The error for each subinterval is estimated by comparison with the 10-point Gauss quadrature rule. The subinterval with the largest estimated error is then bisected, and the same procedure is applied to both halves. The bisection process is continued until either the error criterion is satisfied, roundoff error is detected, the subintervals become too small, or the maximum number of subintervals allowed is reached. This function uses an extrapolation procedure known as the ɛ-algorithm.
The function imsl_f_int_fcn_sing
is based on the subroutine QAGS by
Piessens et al. (1983).
The value of

is estimated.
#include <math.h>
#include
<imsl.h>
float
fcn(float x);
main()
{
float q,
exact;
/* Evaluate the integral */
q = imsl_f_int_fcn_sing (fcn,
0.0, 1.0,
0);
/* Print the result and */
/*the
exact answer */
exact = -4.0;
printf("integral = %10.3f\nexact = %10.3f\n", q,
exact);
}
float fcn(float x)
{
return log(x)/sqrt(x);
}
integral =
-4.000
exact = -4.000
The value of

is again estimated. The values of the actual and estimated errors are printed as well. Note that these numbers are machine dependent. Furthermore, usually the error estimate is pessimistic. That is, the actual error is usually smaller than the error estimate as is in this example.
#include <math.h>
#include
<imsl.h>
float
fcn(float x);
main()
{
float q, exact, err_est,
exact_err;
/* Evaluate the integral */
q = imsl_f_int_fcn_sing (fcn,
0.0,
1.0,
IMSL_ERR_EST,
&err_est,
0);
/* Print the result and */
/* the exact answer */
exact = -4.0;
exact_err = fabs(exact - q);
printf("integral =
%10.3f\nexact = %10.3f\n", q,
exact);
printf("error estimate = %e\nexact
error = %e\n",
err_est,
exact_err);
}
float fcn(float x)
{
return log(x)/sqrt(x);
}
integral =
-4.000
exact =
-4.000
error estimate = 3.175735e-04
exact
error = 6.556511e-05
IMSL_ROUNDOFF_CONTAMINATION Roundoff error, preventing the requested tolerance from being achieved, has been detected.
IMSL_PRECISION_DEGRADATION A degradation in precision has been detected.
IMSL_EXTRAPOLATION_ROUNDOFF Roundoff error in the extrapolation table, preventing the requested tolerance from being achieved, has been detected.
IMSL_DIVERGENT Integral is probably divergent or slowly convergent.
IMSL_MAX_SUBINTERVALS The maximum number of subintervals allowed has been reached.
|
Visual Numerics, Inc. PHONE: 713.784.3131 FAX:713.781.9260 |