Chapter 4: Quadrature

.p>.CMCH4.DOC!INT_FCN_TRIG;int_fcn_trig

Integrates a function containing a sine or a cosine factor.

Synopsis

#include <imsl.h>

float imsl_f_int_fcn_trig (float fcn(), float a, float b, Imsl_quad weight, float omega, ¼, 0)

The type double function is imsl_d_int_fcn_trig.

Required Arguments

float fcn (float x)   (Input)
User-supplied function to be integrated.

float a   (Input)
Lower limit of integration.

float b   (Input)
Upper limit of integration.

Imsl_quad weight and float omega   (Input)
These two parameters are used to describe the trigonometric weight. The parameter weight can take on the two values described below, and the parameter omega = ω specifies the frequency of the trigonometric weighting function.

weight

Integration Weight

IMSL_COS

cos (wx)

IMSL_SIN

sin (wx)

Return Value

The value of

is returned if weight = IMSL_COS. If weight = IMSL_SIN, then the cosine factor is replaced with a sine factor. If no value can be computed, NaN is returned.

 

Synopsis with Optional Arguments

#include <imsl.h>

float imsl_f_int_fcn_trig (float fcn(), float a, float b, Imsl_quad weight, float omega,
IMSL_ERR_ABS, float err_abs,
IMSL_ERR_REL, float err_rel,
IMSL_ERR_EST, float *err_est,
IMSL_MAX_SUBINTER, int max_subinter,
IMSL_N_SUBINTER, int *n_subinter,
IMSL_N_EVALS, int *n_evals,
IMSL_MAX_MOMENTS, int max_moments,
IMSL_FCN_W_DATA, float fcn(), void *data,
0)

Optional Arguments

IMSL_ERR_ABS, float err_abs   (Input)
Absolute accuracy desired.
Default:

where ɛ is the machine precision

IMSL_ERR_REL, float err_rel   (Input)
Relative accuracy desired.
Default:

where ɛ is the machine precision

IMSL_ERR_EST, float *err_est   (Output)
Address to store an estimate of the absolute value of the error.

IMSL_MAX_SUBINTER, int max_subinter   (Input)
Number of subintervals allowed.
Default: max_subinter = 500

IMSL_N_SUBINTER, int *n_subinter   (Output)
Address to store the number of subintervals generated.

IMSL_N_EVALS, int *n_evals   (Output)
Address to store the number of evaluations of fcn.

IMSL_MAX_MOMENTS, int max_moments   (Input)
This is an upper bound on the number of Chebyshev moments that can be stored. Increasing (decreasing) this number may increase (decrease) execution speed and space used.

Default: max_moments = 21

IMSL_FCN_W_DATA, float fcn (float x, void *data), void *data (Input)
User supplied function to be integrated, which also accepts a pointer to data that is supplied by the user.  data is a pointer to the data to be passed to the user-supplied function.  See the Introduction, Passing Data to User-Supplied Functions at the beginning of this manual for more details.

Description

The function imsl_f_int_fcn_trig is a special-purpose integrator that uses a globally adaptive scheme to reduce the absolute error. It computes integrals whose integrands have the special form w(x)f(x) where w(x) is either cos(ωx) or sin(ωx). Depending on the length of the subinterval in relation to the size of ω, either a modified Clenshaw-Curtis procedure or a Gauss-Kronrod 715 rule is employed to approximate the integral on a subinterval. This function uses the general strategy of the function imsl_f_int_fcn_sing. The function imsl_f_int_fcn_trig is based on the subroutine QAWO by Piessens et al. (1983).

Examples

Example 1

The value of

is computed. Notice that we have coded around the singularity at zero. This is necessary since this procedure evaluates the integrand at the two endpoints.

#include <math.h>
#include <imsl.h>

float           fcn(float x);
 
main()
{
    float       q, exact, omega;

    omega = 10*imsl_f_constant("pi", 0);
                                /* Evaluate the integral */
    q = imsl_f_int_fcn_trig (fcn, 0.0, 1.0,
                             IMSL_SIN, omega,
                             0);
                                /* Print the result and the */
                                /* exact answer */
    exact = -.1281316;
    printf("integral  = %10.3f\nexact     = %10.3f\n", q, exact);
}

float fcn(float x)
{  
    return  (x==0.0) ? 0.0 : log(x);
}

Output

integral  =     -0.128
exact     =     -0.128

 

Example 2

The value of

is again computed. The values of the actual and estimated error are printed as well. Note that these numbers are machine dependent. Furthermore, it is usually the case that the error estimate is pessimistic. That is, the actual error is usually smaller than the error estimate as is the case in this example. The number of function evaluations are also printed.

#include <math.h>
#include <imsl.h>

float           fcn(float x);
 
 main()
{
    int         n_evals;
    float       q, exact, omega, err_est, exact_err;

    omega = 10*imsl_f_constant("pi", 0);
                                /* Evaluate the integral */
    q = imsl_f_int_fcn_trig (fcn, 0.0, 1.0,
                             IMSL_SIN, omega,
                             IMSL_ERR_EST, &err_est,
                             IMSL_N_EVALS, &n_evals,
                             0);
                                /* Print the result and the */
                                /* exact answer */
    exact = -.1281316;
    exact_err = fabs(exact - q);
    printf("integral  = %10.3f\nexact     = %10.3f\n", q, exact);
    printf("error estimate   = %e\nexact error      = %e\n", err_est,
             exact_err);
    printf("The number of function evaluations  =  %d\n", n_evals);
}

float fcn(float x)
{  
    return  (x==0.0) ? 0.0 : log(x);
}

Output

integral  =     -0.128
exact     =     -0.128
error estimate   = 7.504603e-05
exact error      = 5.245209e-06
The number of function evaluations  =  215

 

Warning Errors

IMSL_ROUNDOFF_CONTAMINATION         Roundoff error, preventing the requested tolerance from being achieved, has been detected.

IMSL_PRECISION_DEGRADATION           A degradation in precision has been detected.

IMSL_EXTRAPOLATION_ROUNDOFF         Roundoff error in the extrapolation table, preventing the requested tolerance from being achieved, has been detected.

Fatal Errors

IMSL_DIVERGENT                                       Integral is probably divergent or slowly convergent.

IMSL_MAX_SUBINTERVALS                       The maximum number of subintervals allowed has been reached.


Visual Numerics, Inc.
Visual Numerics - Developers of IMSL and PV-WAVE
http://www.vni.com/
PHONE: 713.784.3131
FAX:713.781.9260