Chapter 1: Linear Systems

lin_sol_posdef_coordinate

Solves a sparse real symmetric positive definite system of linear equations Ax = b. Using optional arguments, any of several related computations can be performed. These extra tasks include return­ing the symbolic factorization of A, returning the numeric factorization of A, and computing the solution of Ax = b given either the symbolic or numeric factorizations.

Synopsis

#include <imsl.h>

float *imsl_f_lin_sol_posdef_coordinate (int n, int nz, Imsl_f_sparse_elem *a, float *b, ..., 0)

The type double function is imsl_d_lin_sol_posdef_coordinate.

Required Arguments

int n   (Input)
Number of rows in the matrix.

int nz   (Input)
Number of nonzeros in lower triangle of the matrix.

Imsl_f_sparse_elem *a   (Input)
Vector of length nz containing the location and value of each nonzero entry in the lower triangle of the matrix.

float *b   (Input)
Vector of length n containing the right-hand side.

Return Value

A pointer to the solution x of the sparse symmetric positive definite linear system Ax = b. To release this space, use free. If no solution was computed, then NULL is returned.

Synopsis with Optional Arguments

#include <imsl.h>

float *imsl_f_lin_sol_posdef_coordinate (int n, int nz, Imsl_f_sparse_elem *a, float *b,
IMSL_RETURN_SYMBOLIC_FACTOR,
                              Imsl_symbolic_factor *sym_factor,
IMSL_SUPPLY_SYMBOLIC_FACTOR,
                              Imsl_symbolic_factor *sym_factor,
IMSL_SYMBOLIC_FACTOR_ONLY,
IMSL_RETURN_NUMERIC_FACTOR,
                              Imsl_f_numeric_factor *num_factor,

IMSL_SUPPLY_NUMERIC_FACTOR,
                              Imsl_f_numeric_factor *num_factor,
IMSL_NUMERIC_FACTOR_ONLY,
IMSL_SOLVE_ONLY,
IMSL_MULTIFRONTAL_FACTORIZATION,
IMSL_RETURN_USER, float x[],
IMSL_SMALLEST_DIAGONAL_ELEMENT, float *small_element,
IMSL_LARGEST_DIAGONAL_ELEMENT, float *largest_element,
IMSL_NUM_NONZEROS_IN_FACTOR, int *num_nonzeros,
IMSL_CSC_FORMAT, int *col_ptr, int *row_ind,
                              float *values,
0)

Optional Arguments

IMSL_RETURN_SYMBOLIC_FACTOR, Imsl_symbolic_factor *sym_factor   (Output)
A pointer to a structure of type Imsl_symbolic_factor containing, on return, the symbolic factorization of the input matrix.

IMSL_SUPPLY_SYMBOLIC_FACTOR, Imsl_symbolic_factor *sym_factor   (Input)
A pointer to a structure of type Imsl_symbolic_factor. This structure contains the symbolic factorization of the input matrix computed by imsl_f_lin_sol_posdef_coordinate with the IMSL_RETURN_SYMBOLIC_FACTOR option.

IMSL_SYMBOLIC_FACTOR_ONLY,
Compute the symbolic factorization of the input matrix and return. The argument b is ignored.

IMSL_RETURN_NUMERIC_FACTOR, Imsl_f_numeric_factor *num_factor   (Output)
A pointer to a structure of type Imsl_f_numeric_factor containing, on return, the numeric factorization of the input matrix.

IMSL_SUPPLY_NUMERIC_FACTOR, Imsl_f_numeric_factor *num_factor   (Input)
A pointer to a structure of type Imsl_f_numeric_factor. This structure contains the numeric factorization of the input matrix computed by imsl_f_lin_sol_posdef_coordinate with the IMSL_RETURN_NUMERIC_FACTOR option.

IMSL_NUMERIC_FACTOR_ONLY,
Compute the numeric factorization of the input matrix and return. The argument b is ignored.

IMSL_SOLVE_ONLY,
Solve Ax = b given the numeric or symbolic factorization of A. This option requires the use of either IMSL_SUPPLY_NUMERIC_FACTOR or IMSL_SUPPLY_SYMBOLIC_FACTOR.

IMSL_MULTIFRONTAL_FACTORIZATION,
Perform the numeric factorization using a multifrontal technique. By default, a standard factorization is computed based on a sparse compressed storage scheme.

IMSL_RETURN_USER, float x[]   (Output)
A user-allocated array of length n containing the solution x.

IMSL_SMALLEST_DIAGONAL_ELEMENT, float *small_element   (Output)
A pointer to a scalar containing the smallest diagonal element that occurred during the numeric factorization. This option is valid only if the numeric factorization is computed during this call to imsl_f_lin_sol_posdef_coordinate.

IMSL_LARGEST_DIAGONAL_ELEMENT, float *large_element   (Output)
A pointer to a scalar containing the largest diagonal element that occurred during the numeric factorization. This option is valid only if the numeric factorization is computed during this call to imsl_f_lin_sol_posdef_coordinate.

IMSL_NUM_NONZEROS_IN_FACTOR, int *num_nonzeros   (Output)
A pointer to a scalar containing the total number of nonzeros in the factor.

IMSL_CSC_FORMAT, int *col_ptr, int *row_ind, float *values   (Input)
Accept the coefficient matrix in compressed sparse column (CSC) format.
See the main “Introduction” main at the beginning of this manual for a discussion of this storage scheme.

Description

The function imsl_f_lin_sol_posdef_coordinate solves a system of linear algebraic equations having a sparse symmetric positive definite coefficient matrix A. In this function’s default usage, a symbolic factorization of a permutation of the coefficient matrix is computed first. Then a numerical factorization is performed. The solution of the linear system is then found using the nu­meric factor.

The symbolic factorization step of the computation consists of determining a minimum degree ordering and then setting up a sparse data structure for the Cholesky factor, L. This step only re­quires the “pattern” of the sparse coefficient matrix, i.e., the locations of the nonzeros elements but not any of the elements themselves. Thus, the val field in the Imsl_f_sparse_elem structure is ignored. If an application generates different sparse symmetric positive definite coefficient matri­ces that all have the same sparsity pattern, then by using IMSL_RETURN_SYMBOLIC_FACTOR and IMSL_SUPPLY_SYMBOLIC_FACTOR, the symbolic factorization need only be computed once.

Given the sparse data structure for the Cholesky factor L, as supplied by the symbolic factor, the numeric factorization produces the entries in L so that

PAPT = LLT

Here P is the permutation matrix determined by the minimum degree ordering.

The numerical factorization can be carried out in one of two ways. By default, the standard fac­torization is performed based on a sparse compressed storage scheme. This is fully described in George and Liu (1981). Optionally, a multifrontal technique can be used. The multifrontal method requires more storage but will be faster in certain cases. The multifrontal factorization is based on the routines in Liu (1987). For a detailed description of this method, see Liu (1990), also Duff and Reid (1983, 1984), Ashcraft (1987), Ashcraft et al. (1987), and Liu (1986, 1989).

If an application requires that several linear systems be solved where the coefficient matrix is the same but the right-hand sides change, the options IMSL_RETURN_NUMERIC_FACTOR and IMSL_SUPPLY_NUMERIC_FACTOR can be used to precompute the Cholesky factor. Then the IMSL_SOLVE_ONLY option can be used to efficiently solve all subsequent systems.

Given the numeric factorization, the solution x is obtained by the following calculations:

Ly1 = Pb

Lty2 = y1

x = Pty2

The permutation information, P, is carried in the numeric factor structure.

Examples

Example 1

As an example consider the 5 × 5 coefficient matrix:

Let xT  = (5, 4, 3, 2, 1) so that Ax = (55, 83, 103, 97, 82)T. The number of nonzeros in the lower triangle of A is nz = 10. The sparse coordinate form for the lower triangle is given by the following:

row

0

1

2

2

3

3

4

4

4

4

col

0

1

0

2

2

3

0

1

3

4

val

10

20

1

30

4

40

2

3

5

50

Since this representation is not unique, an equivalent form would be as follows:

row

3

4

4

4

0

1

2

2

3

4

col

3

0

1

3

0

1

0

2

2

4

val

40

2

3

5

10

20

1

30

4

50

#include <imsl.h>

#include <stdlib.h>

main()

{

        Imsl_f_sparse_elem a[] = {0, 0, 10.0,

                                1, 1, 20.0,

                                2, 0, 1.0,

                                2, 2, 30.0,

                                3, 2, 4.0,

                                3, 3, 40.0,

                                4, 0, 2.0,

                                4, 1, 3.0,

                                4, 3, 5.0,

                                4, 4, 50.0};

 

        float   b[] = {55.0, 83.0, 103.0, 97.0, 82.0};

        int     n = 5;                                        

        int     nz = 10;

        float  *x;

         x = imsl_f_lin_sol_posdef_coordinate (n, nz, a, b, 0);

 

        imsl_f_write_matrix ("solution", 1, n, x, 0);

 

        free (x);

}

Output

                         solution

         1           2           3           4           5

         5           4           3           2           1

Example 2

In this example, set A = E(2500, 50). Then solve the system Ax = bl and return the numeric factorization resulting from that call. Then solve the system Ax = b2 using the numeric factorization just computed. The ratio of execution time is printed. Be aware that timing results are highly machine dependent.

#include <imsl.h>


main()

{

        Imsl_f_sparse_elem     *a;

        Imsl_f_numeric_factor   numeric_factor;

        float                  *b_1;

        float                  *b_2;

        float                  *x_1;

        float                  *x_2;

        int                     n;

        int                     ic;

        int                     nz;

        double                  time_1;

        double                  time_2;


        ic = 50;

        n = ic*ic;


                        /*  Generate two right hand sides */


        b_1 = imsl_f_random_uniform (n*sizeof(*b_1), 0);

        b_2 = imsl_f_random_uniform (n*sizeof(*b_2), 0);


                        /*  Build coefficient matrix a */


        a = imsl_f_generate_test_coordinate (n, ic, &nz,

                IMSL_SYMMETRIC_STORAGE,

                0);


                        /*  Now solve Ax_1 = b_1 and return the numeric

                            factorization  */


        time_1 = imsl_ctime ();

        x_1 = imsl_f_lin_sol_posdef_coordinate (n, nz, a, b_1,

                IMSL_RETURN_NUMERIC_FACTOR, &numeric_factor,

                0);

        time_1 = imsl_ctime () - time_1;


                        /*  Now solve Ax_2 = b_2 given the numeric

                            factorization  */


        time_2 = imsl_ctime ();

        x_2 = imsl_f_lin_sol_posdef_coordinate (n, nz, a, b_2,

                IMSL_SUPPLY_NUMERIC_FACTOR, &numeric_factor,

                IMSL_SOLVE_ONLY,

                0);

        time_2 = imsl_ctime () - time_2;


        printf("time_2/time_1 = %lf\n", time_2/time_1);

}

Output

time_2/time_1 = 0.037037


Visual Numerics, Inc.
Visual Numerics - Developers of IMSL and PV-WAVE
http://www.vni.com/
PHONE: 713.784.3131
FAX:713.781.9260