Chapter 4: Analysis of Variance and Designed Experiments > lattice

lattice

Analyzes balanced and partially-balanced lattice experiments.  In these experiments, a requirement is that the number of treatments be equal to the square of an integer, such as 9, 16, or 25 treatments.  Function lattice also analyzes repetitions of lattice experiments.

Synopsis

#include <imsls.h>

float *imsls_f_lattice (int n, int n_locations, int n_reps, int n_blocks, int n_treatments, int rep[], int block[], int treatment[], float y[],…, 0)

The type double function is imsls_d_lattice.

Required Arguments

int n  (Input)
Number of missing and non-missing experimental observations.  imsls_f_lattice verifies that:

 

.

int n_locations   (Input)
Number of locations or repetitions of the lattice experiments.  n_locations must be one or greater.   If n_locations>1 then the optional arguments IMSLS_LOCATIONS must be included as input to imsls_f_lattice.

int n_reps   (Input)
Number of replicates per location.  Each replicate should consist of t = n_treatments organized into  blocks.

int n_blocks   (Input)
Number of blocks per location. For every location,  n_blocks must be equal to n_blocksr·k, where r = n_reps and

int n_treatments   (Input)
Number of treatments t = n_treatments must be equal to k2.

int rep[]    (Input)
An array of length n containing the replicate identifiers for each observation in y.  For a balanced-lattice, the number of replicate identifiers must be equal to n_reps= (k+1). For a partially-balanced lattice, the number of replicate identifiers depends upon whether the design is a simple lattice, triple lattice, etc.  imsls_f_lattice verifies that the number of unique replicate identifiers is equal to n_reps.  If multiple locations or repetitions of the experiment is conducted, i.e., n_locations>1, then the replicate and block numbers contained in rep and block must agree between repetitions.

int block[]    (Input)
An array of length n containing the block identifiers for each observation in yimsls_f_lattice verifies that the number of unique block identifiers is equal to n_blocks.  If multiple locations or repetitions of the experiment is conducted, i.e., n_locations>1, then block numbers must agree between repetitions.  That is, the i-th block in every location or repetition must contain the same treatments.

int treatment[]    (Input)
An array of length n containing the treatment identifiers for each observation in y.  Each treatment must be assigned values from 1 to n_treatmentsimsls_f_lattice verifies that the number of unique treatment identifiers is equal to n_treatments.

float y[]   (Input)
An array of length n containing the experimental observations and any missing values.  Missing values cannot be omitted.  They are indicated by placing a NaN (not a number) in y. The NaN value can be set using either the function imsls_f_machine(6) or imsls_d_machine(6), depending upon whether single or double precision is being used, respectively.  The location, replicate, block, and treatment number for each observation in y are identified by the corresponding values in the arguments locations, rep, block, and treatment.

Return Value

Address of a pointer to the memory location of a two dimensional, 7 by 6 array containing the ANOVA table.  Each row in this array contains values for one of the effects in the ANOVA table.  The first value in each row, anova_tablei,0 = anova_table[i*6], identifies the source for the effect associated with values in that row.  The remaining values in a row contain the ANOVA table values using the following convention:

 

j

anova_tablei,j = anova_table[i*6+j]

0

Source Identifier (values described below)

1

Degrees of freedom

2

Sum of squares

3

Mean squares

4

F-statistic

5

p-value for this F-statistic

 

Note that the p-value for the F-statistic is returned as 0.0 when the value is so small that all significant digits have been lost.

The Source Identifiers in the first column of anova_tablei,j are the only negative values in anova_table[]. Assignments of identifiers to ANOVA sources use the following coding:

 

Source Identifier

ANOVA Source

-1

LOCATIONS

-2

REPLICATES

-3

TREATMENTS(unadjusted)

-4

TREATMENTS(adjusted)

-5

BLOCKS(adjusted)

-6

INTRA-BLOCK ERROR

-7

CORRECTED TOTAL

 

Note: If n_locations=1, all entries in this row are set to missing (NaN).

Synopsis with Optional Arguments

#include <imsl.h>

float  *imsls_f_lattice(int n, int n_locations, int n_reps, in  n_blocks, int n_treatments, int rep[], int block[],
int  treatment[], float y[],
IMSLS_LOCATIONS, int locations[],
IMSLS_N_MISSING, int *n_missing,
IMSLS_CV, float *cv,
IMSLS_GRAND_MEAN, float *grand_mean,
IMSLS_TREATMENT_MEANS, float **treatment_means,
IMSLS_TREATMENT_MEANS_USER, float treatment_means[],
IMSLS_STD_ERRORS, float **std_err,
IMSLS_STD_ERRORS_USER, float std_err[],
IMSLS_LOCATION_ANOVA_TABLE, float **location_anova_table,
IMSLS_LOCATION_ANOVA_TABLE_USER, float location_anova_table[],
IMSLS_ANOVA_ROW_LABELS, char ***anova_row_labels,
IMSLS_ANOVA_ROW_LABELS_USER, char *anova_row_labels[],
IMSLS_RETURN_USER, float anova_table[]
0)

Optional Arguments

IMSLS_LOCATIONS, int locations[]   (Input)
An array of length n containing the location or repetition identifiers for each observation in y.  Unique integers must be assigned to each location in the study.  This argument is required when n_locations>1.

IMSLS_N_MISSING, int *n_missing   (Output)
 Number of missing values, if any, found in y.  Missing values are denoted with a NaN (Not a Number) value.

IMSLS_CV, float *cv   (Output)
 The coefficient of variation computed by using the location standard deviation.

IMSLS_GRAND_MEAN, float *grand_mean (Output)
 The overall adjusted mean averaged over every location.

IMSLS_TREATMENT_MEANS, float **treatment_means   (Output)
Address of a pointer to an internally allocated array of size n_treatments containing the adjusted treatment means.

IMSLS_TREATMENT_MEANS_USER, float treatment_means[]    (Output)
Storage for the array treatment_means, provided by the user.

IMSLS_STD_ERRORS, float  **std_err   (Output)
 Address of a pointer to an internally allocated array of length 4 containing the standard error and  associated degrees of freedom for comparing two treatment means.  std_err[0] contains the standard error for comparing two treatments that appear in the same block at least once.  std_err[1] contains the standard error for comparing two treatments that never appear in the same block together.  std_err[2] contains the standard error for comparing, on average, two treatments from the experiment averaged over cases in which the treatments do or do not appear in the same block.  Finally, std_err[3] contains  the degrees of freedom associated with each of these standard errors, i.e., std_err[3]= degrees of freedom for intra-block error.

IMSLS_STD_ERRORS_USER, float std_err[]   (Output)
Storage for the array std_err, provided by the user.

IMSLS_LOCATION_ANOVA_TABLE, float **location_anova_table   (Output)
Address of a pointer to an internally allocated 3-dimensional array of size n_locations  by 7 by 6 containing the anova tables associated with each location or repetition of the lattice experiment.  For each location, the 7 by 6 dimensional array corresponds to the anova table for that location.  For example, location_anova_table[(i-1)×42+(j-1)×6 + (k-1)] contains the value in the k-th column and j-th row of the anova-table for the i-th location.

IMSLS_LOCATION_ANOVA_TABLE_USER, float anova_table[]   (Output)
Storage for the array location_anova_table, provided by the user.

IMSLS_ANOVA_ROW_LABELS, char ***anova_row_labels   (Output)
Address of a pointer to a pointer to an internally allocated array containing the labels for each of the  n_anova rows of the returned ANOVA table. The label for the i-th row of the ANOVA table can be printed with printf("%s", anova_row_labels[i]); The memory associated with anova_row_labels  can be freed with a single call to imsls_free(anova_row_labels).

IMSLS_ANOVA_ROW_LABELS_USER, char *anova_row_labels[]   (Output)
Storage for the array anova_row_labels, provided by the user.  The amount of space required will vary depending upon the number of factors and n_anova. An upperbound on the required memory is char *anova_row_labels[600];

IMSLS_RETURN_USER, float anova_table[]   (Output)
User defined array of length 42 for storage of the 7 by 6 anova table described as the return argument for imsls_f_lattice.  For a detailed description of the format for this table, see the previous description of the return arguments for imsls_d_lattice.

Description

The function imsls_f_lattice analyzes both balanced and partially-balanced lattice experiments, possibly repeated at multiple locations.  These designs were originally described by Yates (1936).  A defining characteristic of these classes of lattice experiments is that the number of treatments is always the square of an integer, such as = 9, 16, 25, etc. where t is equal to the number of treatments. 

Another characteristic of lattice experiments is that blocks are organized into replicates, where each replicate contains one observation for each treatment.  This requires  the number of blocks in each replicate to be equal to the number of observations per block.  That is, the number of blocks per replicate and the number of observations per block are both equal to .

For balanced lattice experiments the number of replicates is always  .  For partially-balanced lattice experiments, the number of replicates is less than Tables of balanced-lattice experiments are tabulated in Cochran & Cox (1950) for t=9, 16, 25, 49, 64 and 81.

The analysis of balanced and partially-balanced experiments is detailed in Cochran & Cox (1950) and Kuehl (2000). 

Consider, for example, a 3x3 balanced-lattice, i.e., k=3 and t=9.  Notice that the number of replicates is 4 and the number of blocks per replicate is equal to 3.  The total number of blocks is equal to

 . 

For a balanced-lattice,

.

 

Replicate I

Replicate II

Block 1 (T1, T2, T3)

Block 4 (T1, T4, T7)

Block 2 (T4, T5, T6)

Block 5 (T2, T5, T8)

Block 3 (T7, T8, T9)

Block 6 (T3, T6, T9)

Replicate III

Replicate IV

Block 7 (T1, T5, T9)

Block 10 (T1, T6, T8)

Block 8 (T2, T6, T7)

Block 11 (T2, T4, T9)

Block 9 (T3, T4, T8)

Block 12 (T3, T5, T7)

Table 4- 20  A 3x3 Balanced-Lattice for 9 Treatments in Four Replicates.

The analysis of variance for data from a balanced-lattice experiment, takes the form familiar to other balanced incomplete block experiments.  In these experiments, the error term is divided into two components:  the Inter-Block Error and the Intra-Block Error. For single and multiple locations, the general format of the anova tables is illustrated in the Tables 2 and 3.

 

SOURCE

DF

Sum of Squares

Mean Squares

REPLICATES

SSR

MSR

TREATMENTS(unadj)

SST

MST

TREATMENTS(adj)

SSTa

MSTa

BLOCKS(adj)

SSBa

MSBa

INTRA-BLOCK ERROR

SSI

MSI

TOTAL

              SSTot

Table 4- 21 The ANOVA Table for a Lattice Experiment at one Location

 

SOURCE

DF

Sum of Squares

Mean Squares

LOCATIONS

SSL

MSL

REPLICATES WITHIN LOCATIONS

SSR

MSR

TREATMENTS(unadj)

SST

MST

TREATMENTS(adj)

SSTa

MSTa

BLOCKS(adj)

SSB

MSB

INTRA-BLOCK ERROR

SSI

MSI

TOTAL

              SSTot

Table 4- 22  The ANOVA Table for a Lattice Experiment at Multiple Locations

Examples

Example 1

This example is a lattice design for 16 treatments conducted at one location.  A lattice design with t=k2=16 treatments is a balanced lattice design with rk+1=5 replicates and r k=5(4)=20 blocks.

 

#include <imsls.h>

#include <stdio.h>

#include <stdlib.h>

#include <math.h>

void l_print_LSD(int n1, int* equalMeans, float *means);

 

int main()

{

   char **anova_row_labels = NULL;

   char *col_labels[] = {" ", "\nID", "\nDF", "\nSSQ  ",

      "Mean  \nsquares", "\nF-Test", "\np-Value"};

   float alpha = 0.05;

   int i, l, page_width = 132; 

   int n            = 80; /* Total number of observations      */

   int n_locations  = 1;  /* Number of locations               */

   int n_treatments =16;  /* Number of treatments              */

   int n_reps       = 5;  /* Number of replicates              */

   int n_blocks     =20;  /* Total number of blocks            */

   int n_aov_rows   = 7;  /* Number of rows in the anova table */

   int rep[]={                       

      1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,

         2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,

         3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,

         4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4,

         5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5

   };

   int block[]={                       

      1,  1,  1,  1,  2,  2,  2,  2,  3,  3,  3,  3,  4,  4,  4,  4,

      5,  5,  5,  5,  6,  6,  6,  6,  7,  7,  7,  7,  8,  8,  8,  8,

      9,  9,  9,  9, 10, 10, 10, 10, 11, 11, 11, 11, 12, 12, 12, 12,

      13, 13, 13, 13, 14, 14, 14, 14, 15, 15, 15, 15, 16, 16, 16, 16,

      17, 17, 17, 17, 18, 18, 18, 18, 19, 19, 19, 19, 20, 20, 20, 20

   };

   int treatment[]={       

      1,  2,  3,  4,  5,  6,  7,  8,  9, 10, 11, 12, 13, 14, 15, 16,

      1,  5,  9, 13, 10,  2, 14,  6,  7, 15,  3, 11, 16,  8, 12,  4, 

      1,  6, 11, 16,  5,  2, 15, 12,  9, 14,  3,  8, 13, 10,  7,  4, 

      1, 14,  7, 12, 13,  2, 11,  8,  5, 10,  3, 16,  9,  6, 15,  4, 

      1, 10, 15,  8,  9,  2,  7, 16, 13,  6,  3, 12,  5, 14, 11,  4

   };

   float y[] ={

      147, 152, 167, 150, 127, 155, 162, 172,

         147, 100, 192, 177, 155, 195, 192, 205,

         140, 165, 182, 152,  97, 155, 192, 142,

         155, 182, 192, 192, 182, 207, 232, 162,

         155, 132, 177, 152, 182, 130, 177, 165,

         137, 185, 152, 152, 185, 122, 182, 192,

         220, 202, 175, 205, 205, 152, 180, 187,

         165, 150, 200, 160, 155, 177, 185, 172,

         147, 112, 177, 147, 180, 205, 190, 167,

         172, 212, 197, 192, 177, 220, 205, 225

   };

   float grand_mean;

   float cv;

   float *aov;

   float *treatment_means;

   float *std_err;

   int   *equal_means;

   int   df;

   aov = imsls_f_lattice(n, n_locations, n_reps, n_blocks, 

      n_treatments, rep, block, treatment, y,

      IMSLS_GRAND_MEAN, &grand_mean,

      IMSLS_CV, &cv,

      IMSLS_TREATMENT_MEANS, &treatment_means,

      IMSLS_STD_ERRORS, &std_err,

      IMSLS_ANOVA_ROW_LABELS, &anova_row_labels,

      0);

   imsls_page(IMSLS_SET_PAGE_WIDTH, &page_width);

   /* Print the ANOVA table. */

   imsls_f_write_matrix("   *** ANALYSIS OF VARIANCE TABLE ***",

      7, 6, aov,

      IMSLS_WRITE_FORMAT, "%3.0f%3.0f%8.2f%7.2f%7.2f%7.3f",

      IMSLS_ROW_LABELS, anova_row_labels,

      IMSLS_COL_LABELS, col_labels,

      0);

   printf("\n\nAdjusted Grand Mean:      %7.3f", grand_mean);

   printf("\n\nCoefficient of Variation: %7.3f\n\n", cv);

   l = 0;

   printf("Adjusted Treatment Means: \n");

   for (i=0; i < n_treatments; i++){

      printf("treatment[%2d]             %7.4f \n", i+1,

         treatment_means[l++]);

   }

   df = (int)std_err[3];

   printf("\nStandard Error for Comparing Two Adjusted Treatment ");

   printf("Means: %f \n(df=%d)\n", std_err[2], df);

   equal_means = imsls_f_multiple_comparisons(n_treatments,

      treatment_means, df, std_err[2]/(float)sqrt(2.0),

      IMSLS_LSD,

      IMSLS_ALPHA, alpha,

      0);

   l_print_LSD(n_treatments, equal_means, treatment_means);

}

/*

* Function to display means comparison.

*/

void l_print_LSD(int n, int *equalMeans, float *means){

   float x=0.0;

   int i, j, k;

   int iSwitch;

   int *idx;

   idx = (int *) malloc(n * sizeof (int));

   for (k=0; k < n; k++) {

      idx[k]   =k+1;

   }

   /* Sort means in ascending order*/

   iSwitch=1;

   while (iSwitch != 0){

      iSwitch = 0;

      for (i = 0; i < n-1; i++){

         if (means[i] > means[i+1]){

            iSwitch = 1;

            x = means[i];

            means[i] = means[i+1];

            means[i+1] = x;

            j = idx[i];

            idx[i] = idx[i+1];

            idx[i+1] = j;

         }

      }

   }

   printf("[group] \t  Mean \t\tLSD Grouping \n");

   for (i=0; i < n; i++){

      printf("  [%d] \t\t%f", idx[i], means[i]);

      for (j=1; j < i+1; j++){

         if(equalMeans[j-1] >= i+2-j){

            printf("\t  *");

         }else{

            if(equalMeans[j-1]>0) printf("\t");

         }

      }

      if (i < n-1 && equalMeans[i]>0) printf("\t  *");

      printf("\n");

   }

   free(idx);

   idx = NULL;

   return;

}

Output

 

 

                      *** ANALYSIS OF VARIANCE TABLE ***

                                                  Mean

                              ID   DF     SSQ    squares   F-Test    p-Value

Locations .................   -1  ...  ........  .......  .......    .......

Replicates ................   -2    4   6524.38  1631.10  .......    .......

Treatments (unadjusted) ...   -3   15  27297.13  1819.81     4.12  4.11e-005

Treatments (adjusted) .....   -4   15  21271.29  1418.09     4.21  8.99e-005

Blocks (adjusted) .........   -5   15  11339.28   755.95  .......    .......

Intra-Block Error .........   -6   45  15173.09   337.18  .......    .......

Corrected Total ...........   -7   79  60333.88  .......  .......    .......

 

Adjusted Grand Mean:      171.450

 

Coefficient of Variation:  10.710

 

Adjusted Treatment Means:

treatment[ 1]             166.4533

treatment[ 2]             160.7527

treatment[ 3]             183.6289

treatment[ 4]             175.6298

treatment[ 5]             162.6806

treatment[ 6]             167.6717

treatment[ 7]             168.3821

treatment[ 8]             176.5731

treatment[ 9]             162.6928

treatment[10]             118.5197

treatment[11]             189.0615

treatment[12]             190.4607

treatment[13]             169.4514

treatment[14]             197.0827

treatment[15]             185.3560

treatment[16]             168.8029

 

Standard Error for Comparing Two Adjusted Treatment Means: 13.221801

(df=45)

[group]           Mean          LSD Grouping

  [10]          118.519737

  [2]           160.752731        *

  [5]           162.680649        *       *

  [9]           162.692841        *       *

  [1]           166.453323        *       *       *

  [6]           167.671661        *       *       *

  [7]           168.382111        *       *       *

  [16]          168.802887        *       *       *

  [13]          169.451370        *       *       *

  [4]           175.629776        *       *       *       *

  [8]           176.573090        *       *       *       *

  [3]           183.628906        *       *       *       *

  [15]          185.355988        *       *       *       *

  [11]          189.061508                *       *       *

  [12]          190.460724                        *       *

  [14]          197.082703                                *

Example 2

This example consists of a 5 × 5 partially-balanced lattice repeated twice.  In this case,  the number of replicates is not k+1 = 6, it is only n_reps = 2.  Each lattice consists of total of 50 observations which is repeated twice. The first observation in this experiment is missing.

 

#include <math.h>

#include <imsls.h>

#include <stdio.h>

 

void l_print_LSD(int n1, int* equalMeans, float *means);

 

int main()

{

    char **anova_row_labels = NULL;

    char **loc_row_labels   = NULL;

    char *col_labels[] = {" ", "\nID", "\nDF", "\nSSQ  ",

        "Mean  \nsquares", "\nF-Test", "\np-Value"};

    float alpha = 0.05;

    int i, l, page_width = 132;

 

    int n = 100;           /* Total number of observations      */

    int n_locations  = 2;  /* Number of locations               */

    int n_treatments =25;  /* Number of treatments              */

    int n_reps       = 2;  /* Number of replicates/location     */

    int n_blocks     =10;  /* Total number of blocks/location   */

    int n_aov_rows   = 7;  /* Number of rows in the anova table */

 

    int rep[]={

        1, 1, 1, 1, 1,

        1, 1, 1, 1, 1,

        1, 1, 1, 1, 1,

        1, 1, 1, 1, 1,

        1, 1, 1, 1, 1,

        2, 2, 2, 2, 2,

        2, 2, 2, 2, 2,

        2, 2, 2, 2, 2,

        2, 2, 2, 2, 2,

        2, 2, 2, 2, 2,

        1, 1, 1, 1, 1,

        1, 1, 1, 1, 1,

        1, 1, 1, 1, 1,

        1, 1, 1, 1, 1,

        1, 1, 1, 1, 1,

        2, 2, 2, 2, 2,

        2, 2, 2, 2, 2,

        2, 2, 2, 2, 2,

        2, 2, 2, 2, 2,

        2, 2, 2, 2, 2

    };

 

    int block[]={       

        1,  1,  1,  1,  1,

        2,  2,  2,  2,  2,

        3,  3,  3,  3,  3,

        4,  4,  4,  4,  4,

        5,  5,  5,  5,  5,

        6,  6,  6,  6,  6,

        7,  7,  7,  7,  7,

        8,  8,  8,  8,  8,

        9,  9,  9,  9,  9,

        10, 10, 10, 10, 10,

        1,  1,  1,  1,  1,

        2,  2,  2,  2,  2,

        3,  3,  3,  3,  3,

        4,  4,  4,  4,  4,

        5,  5,  5,  5,  5,

        6,  6,  6,  6,  6,

        7,  7,  7,  7,  7,

        8,  8,  8,  8,  8,

        9,  9,  9,  9,  9,

        10, 10, 10, 10, 10

    };

 

    int treatment[]={

        1,  2,  3,  4,  5,

        6,  7,  8,  9, 10,

        11, 12, 13, 14, 15,

        16, 17, 18, 19, 20,

        21, 22, 23, 24, 25,

        1,  6, 11, 16, 21,

        2,  7, 12, 17, 22,

        3,  8, 13, 18, 23,

        4,  9, 14, 19, 24,

        5, 10, 15, 20, 25,

        1,  2,  3,  4,  5,

        6,  7,  8,  9, 10,

        11, 12, 13, 14, 15,

        16, 17, 18, 19, 20,

        21, 22, 23, 24, 25,

        1,  6, 11, 16, 21,

        2,  7, 12, 17, 22,

        3,  8, 13, 18, 23,

        4,  9, 14, 19, 24,

        5, 10, 15, 20, 25

    };

    int location[]={

        1, 1, 1, 1, 1, 1, 1, 1, 1, 1,

        1, 1, 1, 1, 1, 1, 1, 1, 1, 1,

        1, 1, 1, 1, 1, 1, 1, 1, 1, 1,

        1, 1, 1, 1, 1, 1, 1, 1, 1, 1,

        1, 1, 1, 1, 1, 1, 1, 1, 1, 1,

        2, 2, 2, 2, 2, 2, 2, 2, 2, 2,

        2, 2, 2, 2, 2, 2, 2, 2, 2, 2,

        2, 2, 2, 2, 2, 2, 2, 2, 2, 2,

        2, 2, 2, 2, 2, 2, 2, 2, 2, 2,

        2, 2, 2, 2, 2, 2, 2, 2, 2, 2

    };

 

    float y[] ={

        6,  7,  5,  8,  6,

        16, 12, 12, 13,  8,

        17,  7,  7,  9, 14,

        18, 16, 13, 13, 14,

        14, 15, 11, 14, 14,

        24, 13, 24, 11,  8,

        21, 11, 14, 11, 23,

        16,  4, 12, 12, 12,

        17, 10, 30,  9, 23,

        15, 15, 22, 16, 19,

        13, 26,  9, 13, 11,

        15, 18, 22, 11, 15,

        19, 10, 10, 10, 16,

        21, 16, 17,  4, 17,

        15, 12, 13, 20,  8,

        16,  7, 20, 13, 21,

        15, 10, 11,  7, 14,

        7, 11, 15, 15, 16,

        19, 14, 20,  6, 16,

        17, 18, 20, 15, 14

    };

 

    float grand_mean;

    float cv;

    float *aov;

    float *location_anova_table;

    float *loc_anova_table;

    float *treatment_means;

    float *std_err;

    int   df;

    int   n_missing;

    int   *equal_means;

 

    /* Set first observation to missing. */

    y[0] = imsls_f_machine(6);

 

    aov = imsls_f_lattice(n, n_locations, n_reps, n_blocks, 

        n_treatments, rep, block, treatment, y,

        IMSLS_LOCATIONS, location,

        IMSLS_GRAND_MEAN, &grand_mean,

        IMSLS_CV, &cv,

        IMSLS_TREATMENT_MEANS, &treatment_means,

        IMSLS_STD_ERRORS, &std_err,

        IMSLS_LOCATION_ANOVA_TABLE, &location_anova_table,

        IMSLS_ANOVA_ROW_LABELS, &anova_row_labels,

        IMSLS_N_MISSING, &n_missing,

        0);

 

    /* Output results. */

 

    imsls_page(IMSLS_SET_PAGE_WIDTH, &page_width);

    /* Print the ANOVA table. */

    imsls_f_write_matrix("   *** ANALYSIS OF VARIANCE TABLE ***",

        7, 6, aov,

        IMSLS_WRITE_FORMAT, "%3.0f%3.0f%8.2f%7.2f%7.2f%9.3g",

        IMSLS_ROW_LABELS, anova_row_labels,

        IMSLS_COL_LABELS, col_labels,

        0);

 

    /* Print the location ANOVA tables. */

    for (i=0; i < n_locations; i++){

        printf("\n\n\t\t\t\tLOCATION %d", i+1);

        imsls_f_write_matrix("   *** ANALYSIS OF VARIANCE TABLE ***",

            7, 6, &(location_anova_table[i*42]),

            IMSLS_WRITE_FORMAT, "%3.0f%3.0f%8.2f%7.2f%7.2f%9.3g",

            IMSLS_ROW_LABELS, anova_row_labels,

            IMSLS_COL_LABELS, col_labels,

            0);

    }

 

    printf("\n\nAdjusted Grand Mean:      %7.3f", grand_mean);

    printf("\n\nCoefficient of Variation: %7.3f\n\n", cv);

    l = 0;

    printf("Adjusted Treatment Means: \n");

    for (i=0; i < n_treatments; i++){

        printf("treatment[%2d]              %7.4f \n", i+1,

            treatment_means[l++]);

    }

    df = (int) std_err[3];

    printf("\nStandard Error for Comparing Two Adjusted Treatment ");

    printf("Means: %f \n(df=%d)\n", std_err[2], df);

    equal_means = imsls_f_multiple_comparisons(n_treatments,

        treatment_means, df, std_err[2]/sqrt(2), IMSLS_LSD,

        IMSLS_ALPHA, alpha,0);

    l_print_LSD(n_treatments, equal_means, treatment_means);

 

    printf("\n\nNumber of missing observations: %d\n", n_missing);

 

}

/*

* Function to display means comparison.

*/

void l_print_LSD(int n, int *equalMeans, float *means){

    float x=0.0;

    int i, j, k;

    int iSwitch;

    int *idx;

 

    idx = (int *) malloc(n * sizeof (int));

 

    for (k=0; k < n; k++) {

        idx[k]   =k+1;

    }

 

    /* Sort means in ascending order*/

 

    iSwitch=1;

    while (iSwitch != 0){

        iSwitch = 0;

        for (i = 0; i < n-1; i++){

            if (means[i] > means[i+1]){

                iSwitch = 1;

                x = means[i];

                means[i] = means[i+1];

                means[i+1] = x;

                j = idx[i];

                idx[i] = idx[i+1];

                idx[i+1] = j;

            }

        }

    }

    printf("[group] \t  Mean \t\tLSD Grouping \n");

    for (i=0; i < n; i++){

        printf("  [%d] \t\t%f", idx[i], means[i]);

        for (j=1; j < i+1; j++){

            if(equalMeans[j-1] >= i+2-j){

                printf("\t  *");

            }else{

                if(equalMeans[j-1]>0) printf("\t");

            }

        }

        if (i < n-1 && equalMeans[i]>0) printf("\t  *");

        printf("\n");

    }

    imsls_free(idx);

    idx = NULL;

    return;

}

Output

 

                        *** ANALYSIS OF VARIANCE TABLE ***

                                                  Mean

                              ID   DF     SSQ    squares   F-Test    p-Value

Locations .................   -1    1     12.19    12.19     0.25      0.622

Replicates within Locations   -2    2    203.99   101.99     7.44    0.00138

Treatments (unadjusted) ...   -3   24    795.46    33.14     0.02          1

Treatments (adjusted) .....   -4   24    951.20    39.63     2.89    0.00591

Blocks (adjusted) .........   -5   16    770.50    48.16     3.51    0.000256

Intra-Block Error .........   -6   55    753.81    13.71  .......    .......

Corrected Total ...........   -7   98   2535.95  .......  .......    .......

 

 

                                LOCATION 1

                      *** ANALYSIS OF VARIANCE TABLE ***

                                                  Mean

                              ID   DF     SSQ    squares   F-Test    p-Value

Locations .................   -1  ...  ........  .......  .......    .......

Replicates within Locations   -2    1    203.67   203.67  .......    .......

Treatments (unadjusted) ...   -3   24    567.13    23.63     0.78      0.721

Treatments (adjusted) .....   -4   24    661.08    27.54     2.04      0.078

Blocks (adjusted) .........   -5    8    490.51    61.31  .......    .......

Intra-Block Error .........   -6   15    202.93    13.53  .......    .......

Corrected Total ...........   -7   48   1464.24  .......  .......    .......

 

 

                                LOCATION 2

                      *** ANALYSIS OF VARIANCE TABLE ***

                                                  Mean

                              ID   DF     SSQ    squares   F-Test    p-Value

Locations .................   -1  ...  ........  .......  .......    .......

Replicates within Locations   -2    1      0.32     0.32  .......    .......

Treatments (unadjusted) ...   -3   24    622.52    25.94     1.43      0.196

Treatments (adjusted) .....   -4   24    707.51    29.48     2.83     0.0178

Blocks (adjusted) .........   -5    8    269.76    33.72  .......    .......

Intra-Block Error .........   -6   16    166.92    10.43  .......    .......

Corrected Total ...........   -7   49   1059.52  .......  .......    .......

 

 

Adjusted Grand Mean:       14.011

 

Coefficient of Variation:  26.423

 

Adjusted Treatment Means:

treatment[ 1]              17.1507

treatment[ 2]              19.2200

treatment[ 3]              11.1261

treatment[ 4]              14.6230

treatment[ 5]              12.6543

treatment[ 6]              11.8133

treatment[ 7]              11.9045

treatment[ 8]              11.3106

treatment[ 9]               9.5576

treatment[10]              11.5889

treatment[11]              22.1321

treatment[12]              12.7233

treatment[13]              13.1293

treatment[14]              17.8763

treatment[15]              18.6576

treatment[16]              14.6568

treatment[17]              11.4980

treatment[18]              13.1540

treatment[19]               5.4010

treatment[20]              12.9323

treatment[21]              15.4108

treatment[22]              17.0020

treatment[23]              13.9081

treatment[24]              17.6550

treatment[25]              13.1864

 

Standard Error for Comparing Two Adjusted Treatment Means: 4.617277

(df=55)

[group]           Mean          LSD Grouping

  [19]          5.400988          *

  [9]           9.557555          *       *

  [3]           11.126063         *       *       *

  [8]           11.310598         *       *       *

  [17]          11.497972         *       *       *

  [10]          11.588868         *       *       *

  [6]           11.813338         *       *       *

  [7]           11.904538         *       *       *

  [5]           12.654334         *       *       *

  [12]          12.723251         *       *       *

  [20]          12.932302         *       *       *       *

  [13]          13.129311         *       *       *       *

  [18]          13.154031         *       *       *       *

  [25]          13.186358         *       *       *       *

  [23]          13.908089         *       *       *       *

  [4]           14.623020         *       *       *       *

  [16]          14.656771                 *       *       *

  [21]          15.410829                 *       *       *

  [22]          17.002029                 *       *       *

  [1]           17.150679                 *       *       *

  [24]          17.655045                 *       *       *

  [14]          17.876268                 *       *       *

  [15]          18.657581                 *       *       *

  [2]           19.220003                         *       *

  [11]          22.132051                                 *

Number of missing observations: 1


RW_logo.jpg
Contact Support