BS3GD
Evaluates the derivative of a three-dimensional tensor-product spline, given its tensor-product B-spline representation on a grid.
Required Arguments
IXDER — Order of the X-derivative. (Input)
IYDER — Order of the Y-derivative. (Input)
IZDER — Order of the Z-derivative. (Input)
XVEC — Array of length NX containing the x-coordinates at which the spline is to be evaluated. (Input)
The points in XVEC should be strictly increasing.
YVEC — Array of length NY containing the y-coordinates at which the spline is to be evaluated. (Input)
The points in YVEC should be strictly increasing.
ZVEC — Array of length NZ containing the z-coordinates at which the spline is to be evaluated. (Input)
The points in ZVEC should be strictly increasing.
KXORD — Order of the spline in the x-direction. (Input)
KYORD — Order of the spline in the y-direction. (Input)
KZORD — Order of the spline in the z-direction. (Input)
XKNOT — Array of length NXCOEF + KXORD containing the knot sequence in the x-direction. (Input)
XKNOT must be nondecreasing.
YKNOT — Array of length NYCOEF + KYORD containing the knot sequence in the y-direction. (Input)
YKNOT must be nondecreasing.
ZKNOT — Array of length NZCOEF + KZORD containing the knot sequence in the z-direction. (Input)
ZKNOT must be nondecreasing.
BSCOEF — Array of length NXCOEF * NYCOEF * NZCOEF containing the tensor-product
B-spline coefficients. (Input)
BSCOEF is treated internally as a matrix of size NXCOEF by NYCOEF by NZCOEF.
VALUE — Array of size NX by NY by NZ containing the values of the (IXDER, IYDER, IZDER) derivative of the spline on the NX by NY by NZ grid. (Output)
VALUE(I, J, K) contains the derivative of the spline at the point (XVEC(I), YVEC(J), ZVEC(K)).
Optional Arguments
NX — Number of grid points in the x-direction. (Input)
Default: NX = size (XVEC,1).
NY — Number of grid points in the y-direction. (Input)
Default: NY = size (YVEC,1).
NZ — Number of grid points in the z-direction. (Input)
Default: NZ = size (ZVEC,1).
NXCOEF — Number of B-spline coefficients in the x-direction. (Input)
Default: NXCOEF = size (XKNOT,1) - KXORD.
NYCOEF — Number of B-spline coefficients in the y-direction. (Input)
Default: NYCOEF = size (YKNOT,1) - KYORD.
NZCOEF — Number of B-spline coefficients in the z-direction. (Input)
Default: NZCOEF = size (ZKNOT,1) - KZORD.
LDVALU — Leading dimension of VALUE exactly as specified in the dimension statement of the calling program. (Input)
Default: LDVALU = SIZE (VALUE,1).
MDVALU — Middle dimension of VALUE exactly as specified in the dimension statement of the calling program. (Input)
Default: MDVALU = SIZE (VALUE,2).
FORTRAN 90 Interface
Generic: CALL BS3GD (IXDER, IYDER, IZDER, XVEC, YVEC, ZVEC, KXORD, KYORD, KZORD, XKNOT, YKNOT, ZKNOT, BSCOEF, VALUE [])
Specific: The specific interface names are S_BS3GD and D_BS3GD.
FORTRAN 77 Interface
Single: CALL BS3GD (IXDER, IYDER, IZDER, NX, XVEC, NY, YVEC, NZ, ZVEC, KXORD, KYORD, KZORD, XKNOT, YKNOT, ZKNOT, NXCOEF, NYCOEF, NZCOEF, BSCOEF, VALUE, LDVALU, MDVALU)
Double: The double precision name is DBS3GD.
Description
The routine BS3GD evaluates a partial derivative of a trivariate tensor-product spline (represented as a linear combination of tensor-product B-splines) on a grid. For more information, see de Boor (1978, pages 351 353).
This routine returns the value of the function s(p,q,r) on the grid (xiyjzk) for i = 1, nx, j = 1, ny, and k = 1, nz given the coefficients c by computing (for all (xyz) on the grid)
where kx, ky, and kz are the orders of the splines. (These numbers are passed to the subroutine in KXORD, KYORD, and KZORD, respectively.) Likewise, tx, ty, and tz are the corresponding knot sequences (XKNOT, YKNOT, and ZKNOT). The grid must be ordered in the sense that xi < xi + 1yj < yj + 1, and zk < zk + 1.
Comments
1. Workspace may be explicitly provided, if desired, by use of B23GD/DB23GD. The reference is:
CALL B23GD ((IXDER, IYDER, IZDER, NX, XVEC, NY, YVEC, NZ, ZVEC, KXORD, KYORD, KZORD, XKNOT, YKNOT, ZKNOT, NXCOEF, NYCOEF, NZCOEF, BSCOEF, VALUE, LDVALU, MDVALU, LEFTX, LEFTY, LEFTZ, A, B, C, DBIATX, DBIATY, DBIATZ, BX, BY, BZ)
The additional arguments are as follows:
LEFTX — Work array of length NX.
LEFTY — Work array of length NY.
LEFTZ — Work array of length NZ.
A — Work array of length KXORD * KXORD.
B — Work array of length KYORD * KYORD.
C — Work array of length KZORD * KZORD.
DBIATX — Work array of length KXORD * (IXDER + 1).
DBIATY — Work array of length KYORD * (IYDER + 1).
DBIATZ — Work array of length KZORD * (IZDER + 1).
BX — Work array of length KXORD * NX.
BY — Work array of length KYORD * NY.
BZ — Work array of length KZORD * NZ.
2. Informational errors
Type
Code
Description
3
1
XVEC(I) does not satisfy XKNOT(KXORD XVEC(I XKNOT(NXCOEF + 1).
3
2
YVEC(I) does not satisfy YKNOT(KYORD YVEC(I YKNOT(NYCOEF + 1).
3
3
ZVEC(I) does not satisfy ZKNOT(KZORD ZVEC(I ZKNOT(NZCOEF + 1).
4
4
XVEC is not strictly increasing.
4
5
YVEC is not strictly increasing.
4
6
ZVEC is not strictly increasing.
Example
In this example, a spline interpolant s to a function f(xyz) = x4 + y(xz)3 is constructed using BS3IN. Next, BS3GD is used to compute s(2,0,1)(xyz) on the grid. The values of this partial derivative and the error are computed on a 4 × 4 × 2 grid and then displayed.
 
USE BS3GD_INT
USE BS3IN_INT
USE BSNAK_INT
USE UMACH_INT
 
IMPLICIT NONE
INTEGER KXORD, KYORD, KZORD, LDF, LDVAL, MDF, MDVAL, NXDATA,&
NXKNOT, NYDATA, NYKNOT, NZ, NZDATA, NZKNOT
PARAMETER (KXORD=5, KYORD=2, KZORD=3, LDVAL=4, MDVAL=4,&
NXDATA=21, NYDATA=6, NZ=2, NZDATA=8, LDF=NXDATA,&
MDF=NYDATA, NXKNOT=NXDATA+KXORD, NYKNOT=NYDATA+KYORD,&
NZKNOT=NZDATA+KZORD)
!
INTEGER I, J, K, L, NOUT, NXCOEF, NYCOEF, NZCOEF
REAL BSCOEF(NXDATA,NYDATA,NZDATA), F, F201,&
FDATA(LDF,MDF,NZDATA), FLOAT, VALUE(LDVAL,MDVAL,NZ),&
X, XDATA(NXDATA), XKNOT(NXKNOT), XVEC(LDVAL), Y,&
YDATA(NYDATA), YKNOT(NYKNOT), YVEC(MDVAL), Z,&
ZDATA(NZDATA), ZKNOT(NZKNOT), ZVEC(NZ)
INTRINSIC FLOAT
!
!
!
F(X,Y,Z) = X*X*X*X + X*X*X*Y*Z*Z*Z
F201(X,Y,Z) = 18.0*X*Y*Z
!
CALL UMACH (2, NOUT)
! Set up X interpolation points
DO 10 I=1, NXDATA
XDATA(I) = 2.0*(FLOAT(I-1)/FLOAT(NXDATA-1)) - 1.0
10 CONTINUE
! Set up Y interpolation points
DO 20 I=1, NYDATA
YDATA(I) = FLOAT(I-1)/FLOAT(NYDATA-1)
20 CONTINUE
! Set up Z interpolation points
DO 30 I=1, NZDATA
ZDATA(I) = FLOAT(I-1)/FLOAT(NZDATA-1)
30 CONTINUE
! Generate knots
CALL BSNAK (NXDATA, XDATA, KXORD, XKNOT)
CALL BSNAK (NYDATA, YDATA, KYORD, YKNOT)
CALL BSNAK (NZDATA, ZDATA, KZORD, ZKNOT)
! Generate FDATA
DO 50 K=1, NZDATA
DO 40 I=1, NYDATA
DO 40 J=1, NXDATA
FDATA(J,I,K) = F(XDATA(J),YDATA(I),ZDATA(K))
40 CONTINUE
50 CONTINUE
! Interpolate
CALL BS3IN (XDATA, YDATA, ZDATA, FDATA, KXORD, KYORD,&
KZORD, XKNOT, YKNOT, ZKNOT, BSCOEF)
!
NXCOEF = NXDATA
NYCOEF = NYDATA
NZCOEF = NZDATA
! Print over a grid of
! [-1.0,1.0] x [0.0,1.0] x [0.0,1.0]
! at 32 points.
DO 60 I=1, 4
XVEC(I) = 2.0*(FLOAT(I-1)/3.0) - 1.0
60 CONTINUE
DO 70 J=1, 4
YVEC(J) = FLOAT(J-1)/3.0
70 CONTINUE
DO 80 L=1, 2
ZVEC(L) = FLOAT(L-1)
80 CONTINUE
CALL BS3GD (2, 0, 1, XVEC, YVEC, ZVEC, KXORD, KYORD,&
KZORD, XKNOT, YKNOT, ZKNOT, BSCOEF, VALUE)
!
!
WRITE (NOUT,99999)
DO 110 I=1, 4
DO 100 J=1, 4
DO 90 L=1, 2
WRITE (NOUT,'(5F13.4)') XVEC(I), YVEC(J), ZVEC(L),&
VALUE(I,J,L),&
F201(XVEC(I),YVEC(J),ZVEC(L)) -&
VALUE(I,J,L)
90 CONTINUE
100 CONTINUE
110 CONTINUE
99999 FORMAT (44X, '(2,0,1)', /, 10X, 'X', 11X, 'Y', 10X, 'Z', 10X,&
'S (X,Y,Z) Error')
STOP
END
Output
 
                                            (2,0,1)
          X           Y          Z          S     (X,Y,Z)  Error
      -1.0000       0.0000       0.0000      -0.0005       0.0005
      -1.0000       0.0000       1.0000       0.0002      -0.0002
      -1.0000       0.3333       0.0000       0.0641      -0.0641
      -1.0000       0.3333       1.0000      -5.9360      -0.0640
      -1.0000       0.6667       0.0000       0.1274      -0.1274
      -1.0000       0.6667       1.0000     -11.8730      -0.1270
      -1.0000       1.0000       0.0000       0.1911      -0.1911
      -1.0000       1.0000       1.0000     -17.8086      -0.1914
      -0.3333       0.0000       0.0000       0.0000       0.0000
      -0.3333       0.0000       1.0000       0.0000       0.0000
      -0.3333       0.3333       0.0000       0.0212      -0.0212
      -0.3333       0.3333       1.0000      -1.9788      -0.0212
      -0.3333       0.6667       0.0000       0.0425      -0.0425
      -0.3333       0.6667       1.0000      -3.9575      -0.0425
      -0.3333       1.0000       0.0000       0.0637      -0.0637
      -0.3333       1.0000       1.0000      -5.9363      -0.0637
       0.3333       0.0000       0.0000       0.0000       0.0000
       0.3333       0.0000       1.0000       0.0000       0.0000
       0.3333       0.3333       0.0000      -0.0212       0.0212
       0.3333       0.3333       1.0000       1.9788       0.0212
       0.3333       0.6667       0.0000      -0.0425       0.0425
       0.3333       0.6667       1.0000       3.9575       0.0425
       0.3333       1.0000       0.0000      -0.0637       0.0637
       0.3333       1.0000       1.0000       5.9363       0.0637
       1.0000       0.0000       0.0000      -0.0005       0.0005
       1.0000       0.0000       1.0000       0.0000       0.0000
       1.0000       0.3333       0.0000      -0.0637       0.0637
       1.0000       0.3333       1.0000       5.9359       0.0641
       1.0000       0.6667       0.0000      -0.1273       0.1273
       1.0000       0.6667       1.0000      11.8733       0.1267
       1.0000       1.0000       0.0000      -0.1912       0.1912
       1.0000       1.0000       1.0000      17.8096       0.1904
Published date: 03/19/2020
Last modified date: 03/19/2020