TRNRR
Transposes a rectangular matrix.
Required Arguments
A — Real NRA by NCA matrix in full storage mode. (Input)
B — Real NRB by NCB matrix in full storage mode containing the transpose of A. (Output)
Optional Arguments
NRA — Number of rows of A. (Input)
Default: NRA = SIZE (A,1).
NCA — Number of columns of A. (Input)
Default: NCA = SIZE (A,2).
LDA — Leading dimension of A exactly as specified in the dimension statement of the calling program. (Input)
Default: LDA = SIZE (A,1).
NRB — Number of rows of B. (Input)
NRB must be equal to NCA.
Default: NRB = SIZE (B,1).
NCB — Number of columns of B. (Input)
NCB must be equal to NRA.
Default: NCB = SIZE (B,2).
LDB — Leading dimension of B exactly as specified in the dimension statement of the calling program. (Input)
Default: LDB = SIZE (B,1).
FORTRAN 90 Interface
Generic: CALL TRNRR (A, B [])
Specific: The specific interface names are S_TRNRR and D_TRNRR.
FORTRAN 77 Interface
Single: CALL TRNRR (NRA, NCA, A, LDA, NRB, NCB, B, LDB)
Double: The double precision name is DTRNRR.
Description
The routine TRNRR computes the transpose B = AT of a real rectangular matrix A.
If LDA = LDB and NRA = NCA, then A and B can occupy the same storage locations; otherwise, A and B must be stored separately.
Example
Transpose the 5 × 3 real rectangular matrix A into the 3 × 5 real rectangular matrix B.

USE TRNRR_INT
USE WRRRN_INT

IMPLICIT NONE
! Declare variables
INTEGER NCA, NCB, NRA, NRB
PARAMETER (NCA=3, NCB=5, NRA=5, NRB=3)
!
REAL A(NRA,NCA), B(NRB,NCB)
! Set values for A
! A = ( 11.0 12.0 13.0 )
! ( 21.0 22.0 23.0 )
! ( 31.0 32.0 33.0 )
! ( 41.0 42.0 43.0 )
! ( 51.0 52.0 53.0 )
!
DATA A/11.0, 21.0, 31.0, 41.0, 51.0, 12.0, 22.0, 32.0, 42.0,&
52.0, 13.0, 23.0, 33.0, 43.0, 53.0/
! B = transpose(A)
CALL TRNRR (A, B)
! Print results
CALL WRRRN ('B = trans(A)', B)
END
Output

B = trans(A)
1 2 3 4 5
1 11.00 21.00 31.00 41.00 51.00
2 12.00 22.00 32.00 42.00 52.00
3 13.00 23.00 33.00 43.00 53.00