ACBCB
Adds two complex band matrices, both in band storage mode.
Required Arguments
AN by N complex band matrix with NLCA lower codiagonals and NUCA upper codiagonals stored in band mode with dimension (NLCA + NUCA + 1) by N. (Input)
NLCA — Number of lower codiagonals of A. (Input)
NUCA — Number of upper codiagonals of A. (Input)
BN by N complex band matrix with NLCB lower codiagonals and NUCB upper codiagonals stored in band mode with dimension (NLCB + NUCB + 1) by N. (Input)
NLCB — Number of lower codiagonals of B. (Input)
NUCB — Number of upper codiagonals of B. (Input)
CN by N complex band matrix with NLCC lower codiagonals and NUCC upper codiagonals containing the sum A + B in band mode with dimension (NLCC + NUCC + 1) by N. (Output)
NLCC — Number of lower codiagonals of C. (Input)
NLCC must be at least as large as max(NLCA, NLCB).
NUCC — Number of upper codiagonals of C. (Input)
NUCC must be at least as large as max(NUCA, NUCB).
Optional Arguments
N — Order of the matrices A, B and C. (Input)
Default: N = SIZE (A,2).
LDA — Leading dimension of A exactly as specified in the dimension statement of the calling program. (Input)
Default: LDA = SIZE (A,1).
LDB — Leading dimension of B exactly as specified in the dimension statement of the calling program. (Input)
Default: LDB = SIZE (B,1).
LDC — Leading dimension of C exactly as specified in the dimension statement of the calling program. (Input)
Default: LDC = SIZE (C,1).
FORTRAN 90 Interface
Generic: CALL ACBCB (A, NLCA, NUCA, B, NLCB, NUCB, C, NLCC, NUCC [])
Specific: The specific interface names are S_ACBCB and D_ACBCB.
FORTRAN 77 Interface
Single: CALL ACBCB (N, A, LDA, NLCA, NUCA, B, LDB, NLCB, NUCB, C, LDC, NLCC, NUCC)
Double: The double precision name is DACBCB.
Description
The routine ACBCB adds two complex matrices stored in band mode, returning a complex matrix stored in band mode.
Example
Add two complex matrices of order 4 stored in band mode. Matrix A has two upper codiagonals and no lower codiagonals. Matrix B has no upper codiagonals and two lower codiagonals. The output matrix C has two upper codiagonals and two lower codiagonals.
 
USE ACBCB_INT
USE WRCRN_INT
 
IMPLICIT NONE
! Declare variables
INTEGER LDA, LDB, LDC, N, NLCA, NLCB, NLCC, NUCA, NUCB, NUCC
PARAMETER (LDA=3, LDB=3, LDC=5, N=3, NLCA=0, NLCB=2, NLCC=2, &
NUCA=2, NUCB=0, NUCC=2)
!
COMPLEX A(LDA,N), B(LDB,N), C(LDC,N)
! Set values for A (in band mode)
! A = ( 0.0 + 0.0i 0.0 + 0.0i 3.0 - 2.0i )
! ( 0.0 + 0.0i -1.0+ 3.0i 6.0 + 0.0i )
! ( 1.0 + 4.0i 5.0 - 2.0i 3.0 + 1.0i )
!
! Set values for B (in band mode)
! B = ( 3.0 + 1.0i 4.0 + 1.0i 7.0 - 1.0i )
! ( -1.0- 4.0i 9.0 + 3.0i 0.0 + 0.0i )
! ( 2.0 - 1.0i 0.0 + 0.0i 0.0 + 0.0i )
!
DATA A/(0.0,0.0), (0.0,0.0), (1.0,4.0), (0.0,0.0), (-1.0,3.0), &
(5.0,-2.0), (3.0,-2.0), (6.0,0.0), (3.0,1.0)/
DATA B/(3.0,1.0), (-1.0,-4.0), (2.0,-1.0), (4.0,1.0), (9.0,3.0), &
(0.0,0.0), (7.0,-1.0), (0.0,0.0), (0.0,0.0)/
! Compute C = A+B
CALL ACBCB (A, NLCA, NUCA, B, NLCB, NUCB, C, NLCC, NUCC)
! Print results
CALL WRCRN ('C = A+B', C)
END
Output
 
C = A+B
1 2 3
1 ( 0.00, 0.00) ( 0.00, 0.00) ( 3.00, -2.00)
2 ( 0.00, 0.00) ( -1.00, 3.00) ( 6.00, 0.00)
3 ( 4.00, 5.00) ( 9.00, -1.00) ( 10.00, 0.00)
4 ( -1.00, -4.00) ( 9.00, 3.00) ( 0.00, 0.00)
5 ( 2.00, -1.00) ( 0.00, 0.00) ( 0.00, 0.00)