AIDE
This function evaluates the exponentially scaled derivative of the Airy function.
Function Return Value
AIDE — Function value. (Output)
The derivative of the Airy function for negative arguments and the exponentially scaled derivative of the Airy function, eζAiʹ(X), for positive arguments where
Required Arguments
X — Argument for which the Airy function value is desired. (Input)
FORTRAN 90 Interface
Generic: AIDE (X)
Specific: The specific interface names are S_AIDE and D_AIDE.
FORTRAN 77 Interface
Single: AIDE (X)
Double: The double precision name is DAIDE.
Description
The exponentially scaled derivative of the Airy function is defined to be
If , then the answer will have no precision. If , then the answer will be less accurate than half precision. Here, ɛ = AMACH(4) is the machine precision.
Example
In this example, AIDE(0.49) is computed and printed.
 
USE AIDE_INT
USE UMACH_INT
 
IMPLICIT NONE
! Declare variables
INTEGER NOUT
REAL VALUE, X
! Compute
X = 0.49
VALUE = AIDE(X)
! Print the results
CALL UMACH (2, NOUT)
WRITE (NOUT,99999) X, VALUE
99999 FORMAT (' AIDE(', F6.3, ') = ', F6.3)
END
Output
 
AIDE( 0.490) = -0.284