IFFT

Computes the inverse of the Discrete Fourier Transform of one complex sequence.

Function Return Value

Complex array containing the inverse of the Discrete Fourier Transform of X. The result is the complex array of the same shape and rank as X. (Output)

Required Argument

X — Array containing the sequence for which the inverse transform is to be computed.  X is an assumed shape complex array of rank 1, 2 or 3. If X is real or double, it is converted to complex internally prior to the computation. (Input)

Optional Arguments, Packaged Options

WORK — a COMPLEX array of the same precision as the data.  For rank-1 transforms the size of WORK is n+15.  To define this array for each problem, set WORK(1) = 0. Each additional rank adds the dimension of the transform plus 15.  Using the optional argument WORK increases the efficiency of the transform. 

The option and derived type names are given in the following tables:

Option Name for IFFT

Option Value

options_for_fast_dft

1

 

Name of Unallocated Option Array
to Use for Setting Options

Use

Derived Type

?_ifft_options(:)

Use when setting options for calls hereafter.

?_options

?_ifft_options_once(:)

Use when setting options for next call only.

?_options

For a description on how to use these options, see Matrix Optional Data Changes.  See fast_dft located in Chapter 6, “Transforms”  for the specific options for this routine.

FORTRAN 90 Interface

IFFT (X [,…])

Description

Computes the inverse of  the Discrete Fourier Transform of a complex sequence.  This function uses fast_dft, fast_2dft, and fast_3dft from Chapter 6.

Example (operator_ex37.f90)

 

      use rand_gen_int

      use fft_int

      use ifft_int

      use linear_operators

 

      implicit none

 

! This is the equivalent of Example 4 for FAST_DFT (using operators).

 

      integer j

      integer, parameter :: n=40

      real(kind(1e0)) :: err, one=1e0

      real(kind(1e0)), dimension(n) :: a, b, c, yy(n,n)

      complex(kind(1e0)), dimension(n) ::  f, fa, fb

 

! Generate two random periodic sequences 'a' and 'b'.

      a=rand(a); b=rand(b)

 

! Compute the convolution 'c' of 'a' and 'b'.

      yy(1:,1)=b

      do j=2,n

        yy(2:,j)=yy(1:n-1,j-1)

        yy(1,j)=yy(n,j-1)

      end do

 

      c=yy .x. a

 

! Compute f=inverse(transform(a)*transform(b)).

      fa = fft(a)

      fb = fft(b)

      f=ifft(fa*fb)

 

! Check the Convolution Theorem:

! inverse(transform(a)*transform(b)) = convolution(a,b).

      err = norm(c-f)/norm(c)

      if (err <= sqrt(epsilon(one))) then

         write (*,*) 'Example 4 for FAST_DFT (operators) is correct.'

      end if

 

      end


Visual Numerics, Inc.
Visual Numerics - Developers of IMSL and PV-WAVE
http://www.vni.com/
PHONE: 713.784.3131
FAX:713.781.9260