LFCRT

Estimates the condition number of a real triangular matrix.

Required Arguments

AN by N matrix containing the coefficient matrix for the triangular linear system.   (Input)
For a lower triangular system, only the lower triangular part and diagonal of A are referenced. For an upper triangular system, only the upper triangular part and diagonal of A are referenced.

RCOND — Scalar containing an estimate of the reciprocal of the L1condition number of A.   (Output)

Optional Arguments

N — Number of equations.   (Input)
Default: N = size (A,2).

LDA — Leading dimension of A exactly as specified in the dimension statement of the calling program.   (Input)
Default: LDA = size (A,1).

IPATH — Path indicator.   (Input)
IPATH = 1 means A is lower triangular.
IPATH = 2 means A is upper triangular.
Default: IPATH =1.

FORTRAN 90 Interface

Generic:                              CALL LFCRT (A, RCOND [,…])

Specific:                             The specific interface names are S_LFCRT and D_LFCRT.

FORTRAN 77 Interface

Single:                                CALL LFCRT (N, A, LDA, IPATH, RCOND)

Double:                              The double precision name is DLFCRT.

ScaLAPACK Interface

Generic:                              CALL LFCRT (A0, RCOND [,…])

Specific:                             The specific interface names are S_LFCRT and D_LFCRT.

See the ScaLAPACK Usage Notes below for a description of the arguments for distributed computing.

Description

Routine LFCRT estimates the condition number of a real triangular matrix. The L1 condition number of the matrix A is defined to be κ(A) = ||A||1||A-1||1. Since it is expensive to compute ||A-1||1, the condition number is only estimated. The estimation algorithm is the same as used by LINPACK and is described by Cline et al. (1979).

If the estimated condition number is greater than 1/ε (where ε is machine precision), a warning error is issued. This indicates that very small changes in A can cause very large changes in the solution x.

The underlying code is based on either LINPACK , LAPACK, or ScaLAPACK code depending upon which supporting libraries are used during linking. For a detailed explanation see “Using ScaLAPACK, LAPACK, LINPACK, and EISPACK” in the Introduction section of this manual.

Comments

1.         Workspace may be explicitly provided, if desired, by use of L2CRT/ DL2CRT. The reference is:

CALL L2CRT (N, A, LDA, IPATH, RCOND, WK)

The additional argument is:

WK — Work vector of length N.

2.         Informational error

Type   Code

3           1                  The input triangular matrix is algorithmically singular.

ScaLAPACK Usage Notes

The arguments which differ from the standard version of this routine are:

A0 —   MXLDA by MXCOL local matrix containing the local portions of the distributed matrix AA contains the coefficient matrix for the triangular linear system.   (Input)
For a lower triangular system, only the lower triangular part and diagonal of A are referenced. For an upper triangular system, only the upper triangular part and diagonal of A are referenced.

All other arguments are global and are the same as described for the standard version of the routine. In the argument descriptions above,  MXLDA and MXCOL can be obtained through a call to SCALAPACK_GETDIM (see Utilities) after a call to  SCALAPACK_SETUP (see Utilities) has been made. See the ScaLAPACK Example below.

Example

An estimate of the reciprocal condition number is computed for a 3 × 3 lower triangular coefficient matrix.

 

      USE LFCRT_INT
      USE UMACH_INT

!                                 Declare variables

      PARAMETER  (LDA=3)

      REAL       A(LDA,LDA), RCOND

      INTEGER    NOUT

!                                 Set values for A and B

!                                 A = (  2.0               )

!                                     (  2.0    -1.0       )

!                                     ( -4.0     2.0    5.0)

!

      DATA A/2.0, 2.0, -4.0, 0.0, -1.0, 2.0, 0.0, 0.0, 5.0/

!

!                                 Compute the reciprocal condition

!                                 number  (IPATH=1)

      CALL LFCRT (A, RCOND)

!                                 Print results

      CALL UMACH (2, NOUT)

      WRITE (NOUT,99999) RCOND, 1.0E0/RCOND

99999 FORMAT ('  RCOND = ',F5.3,/,'  L1 Condition number = ',F6.3)

      END

Output

 

RCOND < 0.1
L1 Condition number < 15.0

ScaLAPACK Example

The same lower triangular matrix as in the example above is used in this distributed computing example. An estimate of the reciprocal condition number is computed for the 3 × 3 lower triangular coefficient matrix. SCALAPACK_MAP is an IMSL utility routine (see Chapter 11, “Utilities”)  used to map an array to the processor grid. It is used here for brevity. DESCINIT is a ScaLAPACK tools routine which initializes the descriptors for the local arrays.

 

      USE MPI_SETUP_INT
      USE LFCRT_INT
      USE SCALAPACK_SUPPORT

      IMPLICIT NONE

      INCLUDE ‘mpif.h'

!                                 Declare variables

      INTEGER        LDA, N, NOUT, DESCA(9)
      INTEGER       INFO, MXCOL, MXLDA
      REAL          RCOND
      REAL, ALLOCATABLE ::        A(:,:)
      REAL, ALLOCATABLE ::        A0(:,:)

      PARAMETER      (LDA=3, N=3)

!                                 Set up for MPI

      MP_NPROCS = MP_SETUP()
      IF(MP_RANK .EQ. 0) THEN
          ALLOCATE (A(LDA,N))

!                                 Set values for A

          A(1,:) = (/ 2.0,  0.0,  0.0/)
          A(2,:) = (/ 2.0, -1.0,  0.0/)
          A(3,:) = (/-4.0,  2.0,  5.0/)
      ENDIF

!                                  Set up a 1D processor grid and define

!                                  its context ID, MP_ICTXT

      CALL SCALAPACK_SETUP(N, N, .TRUE., .TRUE.)

!                                  Get the array descriptor entities MXLDA,

!                                  and MXCOL

      CALL SCALAPACK_GETDIM(N, N, MP_MB, MP_NB, MXLDA, MXCOL)

!                                  Set up the array descriptor

      CALL DESCINIT(DESCA, N, N, MP_MB, MP_NB, 0, 0, MP_ICTXT, MXLDA, INFO)
!                                   Allocate space for the local arrays

      ALLOCATE (A0(MXLDA,MXCOL))

!                                 Map input array to the processor grid

      CALL SCALAPACK_MAP(A, DESCA, A0)

!                                 Compute the reciprocal condition

!                                 number  (IPATH=1)

      CALL LFCRT (A0, RCOND)

!                                 Print results.

!                                 Only Rank=0 has the solution, RCOND.

      IF(MP_RANK .EQ. 0) THEN

         CALL UMACH (2, NOUT)

         WRITE (NOUT,99999) RCOND, 1.0E0/RCOND

      ENDIF

      IF (MP_RANK .EQ. 0) DEALLOCATE(A)

      DEALLOCATE(A0)

!                                 Exit Scalapack usage

      CALL SCALAPACK_EXIT(MP_ICTXT)

!                                 Shut down MPI

      MP_NPROCS = MP_SETUP(‘FINAL')

99999 FORMAT ('  RCOND = ',F5.3,/,'  L1 Condition number = ',F6.3)
      END

Output

 

RCOND < 0.1
L1 Condition number < 15.0


Visual Numerics, Inc.
Visual Numerics - Developers of IMSL and PV-WAVE
http://www.vni.com/
PHONE: 713.784.3131
FAX:713.781.9260