LINDS

Computes the inverse of a real symmetric positive definite matrix.

Required Arguments

AN by N matrix containing the symmetric positive definite matrix to be inverted.   (Input)
Only the upper triangle of A is referenced.

AINVN by N matrix containing the inverse of A.  (Output)
If A is not needed, A and AINV can share the same storage locations.

Optional Arguments

N — Order of the matrix A.   (Input)
Default: N = size (A,2).

LDA — Leading dimension of A exactly as specified in the dimension statement of the calling program.   (Input)
Default: LDA = size (A,1).

LDAINV — Leading dimension of AINV exactly as specified in the dimension statement of the calling program.   (Input)
Default: LDAINV = size (AINV,1).

FORTRAN 90 Interface

Generic:                              CALL LINDS (A, AINV [,…])

Specific:                             The specific interface names are S_LINDS and D_LINDS.

FORTRAN 77 Interface

Single:                                CALL LINDS (N, A, LDA, AINV, LDAINV)

Double:                              The double precision name is DLINDS.

ScaLAPACK Interface

Generic:                              CALL LINDS (A0, AINV0 [,…])

Specific:                             The specific interface names are S_LINDS and D_LINDS.

See the ScaLAPACK Usage Notes below for a description of the arguments for distributed computing.

Description

Routine LINDS computes the inverse of a real symmetric positive definite matrix. The underlying code is based on either LINPACK , LAPACK, or ScaLAPACK code depending upon which supporting libraries are used during linking. For a detailed explanation see
Using ScaLAPACK, LAPACK, LINPACK, and EISPACK” in the Introduction section of this manual.  LINDS first uses the routine LFCDS to compute an RTR factorization of the coefficient matrix and to estimate the condition number of the matrix. LINRT is then used to compute R-1. Finally A-1 is computed using R-1 = R-1  R-T.

LINDS fails if any submatrix of R is not positive definite or if R has a zero diagonal element. These errors occur only if A is very close to a singular matrix or to a matrix which is not positive definite.

If the estimated condition number is greater than 1/ε (where ε is machine precision), a warning error is issued. This indicates that very small changes in  A can cause very large changes in A.

Comments

1.         Workspace may be explicitly provided, if desired, by use of L2NDS/DL2NDS. The reference is:

CALL L2NDS (N, A, LDA, AINV, LDAINV, WK)

The additional argument is:

WK — Work vector of length N.

2.         Informational errors

Type   Code

3           1                  The input matrix is too ill-conditioned. The solution might not be accurate.

4           2                  The input matrix is not positive definite.

ScaLAPACK Usage Notes

The arguments which differ from the standard version of this routine are:

A0 —   MXLDA by MXCOL local matrix containing the local portions of the distributed matrix AA contains the symmetric positive definite matrix to be inverted.   (Input)

AINV0 —   MXLDA by MXCOL local matrix containing the local portions of the distributed matrix AINVAINV contains the inverse of the matrix A.   (Output)
If A is not needed, A and AINV can share the same storage locations.

All other arguments are global and are the same as described for the standard version of the routine. In the argument descriptions above,  MXLDA and MXCOL can be obtained through a call to SCALAPACK_GETDIM (see Utilities) after a call to  SCALAPACK_SETUP (see Utilities) has been made. See the ScaLAPACK Example below.

Example

The inverse is computed for a real positive definite 3 × 3 matrix.

 

      USE LINDS_INT
      USE WRRRN_INT

!                                 Declare variables

      INTEGER    LDA, LDAINV

      PARAMETER  (LDA=3, LDAINV=3)

      REAL       A(LDA,LDA), AINV(LDAINV,LDAINV)

!

!                                 Set values for A

!                                 A = (  1.0  -3.0   2.0)

!                                     ( -3.0  10.0  -5.0)

!                                     (  2.0  -5.0   6.0)

!

      DATA A/1.0, -3.0, 2.0, -3.0, 10.0, -5.0, 2.0, -5.0, 6.0/

!

      CALL LINDS (A, AINV)

!                                 Print results

      CALL WRRRN ('AINV', AINV)

!

      END

Output

 

           AINV
        1       2       3
1   35.00    8.00   -5.00
2    8.00    2.00   -1.00
3   -5.00   -1.00    1.00

ScaLAPACK Example

The inverse of the same 3 × 3 matrix is computed as a distributed example. SCALAPACK_MAP and SCALAPACK_UNMAP are IMSL utility routines (see Chapter 11, “Utilities”) used to map and unmap arrays to and from the processor grid. They are used here for brevity.  DESCINIT is a ScaLAPACK tools routine which initializes the descriptors for the local arrays.

 

      USE MPI_SETUP_INT
      USE LINDS_INT
      USE WRRRN_INT
      USE SCALAPACK_SUPPORT
      IMPLICIT NONE
      INCLUDE ‘mpif.h'

!                                 Declare variables

      INTEGER     J, LDA, LDFACT, N, DESCA(9)
      INTEGER     INFO, MXCOL, MXLDA
      REAL, ALLOCATABLE ::        A(:,:), AINV(:,:)
      REAL, ALLOCATABLE ::        A0(:,:), AINV0(:,:)

      PARAMETER  (LDA=3, N=3)

!                                 Set up for MPI

      MP_NPROCS = MP_SETUP()

      IF(MP_RANK .EQ. 0) THEN

          ALLOCATE (A(LDA,N), AINV(LDA,N))

!                                 Set values for A

          A(1,:) = (/  1.0,  -3.0,  2.0/)
          A(2,:) = (/ -3.0,  10.0, -5.0/)
          A(3,:) = (/  2.0,  -5.0,  6.0/)

      ENDIF

 

!                                  Set up a 1D processor grid and define

!                                  its context ID, MP_ICTXT

      CALL SCALAPACK_SETUP(N, N, .TRUE., .TRUE.)
!                                  Get the array descriptor entities MXLDA,

!                                  and MXCOL

      CALL SCALAPACK_GETDIM(N, N, MP_MB, MP_NB, MXLDA, MXCOL)

!                                  Set up the array descriptors

      CALL DESCINIT(DESCA, N, N, MP_MB, MP_NB, 0, 0, MP_ICTXT, MXLDA, INFO)

!                                   Allocate space for the local arrays
      ALLOCATE(A0(MXLDA,MXCOL), AINV0(MXLDA,MXCOL))
!                                  Map input arrays to the processor grid
      CALL SCALAPACK_MAP(A, DESCA, A0)

!                                  Call the routine to get the inverse

      CALL LINDS (A0, AINV0)

!                                  Unmap the results from the distributed

!                                  arrays back to a nondistributed array.

!                                  After the unmap, only Rank=0 has the full

!                                  array.

      CALL SCALAPACK_UNMAP(AINV0, DESCA, AINV)
!                                  Print results.
!                                  Only Rank=0 has the solution, AINV.

      IF(MP_RANK.EQ.0) CALL WRRRN ('AINV', AINV)
      IF (MP_RANK .EQ. 0) DEALLOCATE(A, AINV)

      DEALLOCATE(A0, AINV0)

!                                  Exit ScaLAPACK usage

      CALL SCALAPACK_EXIT(MP_ICTXT)

!                                  Shut down MPI

      MP_NPROCS = MP_SETUP(‘FINAL')

      END

Output


          AINV

        1       2       3

1   35.00    8.00   -5.00

2    8.00    2.00   -1.00
3   -5.00   -1.00    1.00


Visual Numerics, Inc.
Visual Numerics - Developers of IMSL and PV-WAVE
http://www.vni.com/
PHONE: 713.784.3131
FAX:713.781.9260