LIN_SOL_SVD

Solves a rectangular least-squares system of linear equations Ax b using singular value decomposition

With optional arguments, any of several related computations can be performed. These extra tasks include computing the rank of A, the orthogonal m × m and n × n matri­ces U and V, and the m × n diagonal matrix of singular values, S.

Required Arguments

A —   Array of size m × n containing the matrix. (Input [/Output])
If the packaged option lin_sol_svd_overwrite_input is used, this array is not saved on output.

B —   Array of size m × nb containing the right-hand side matrix. (Input [/Output]
If the packaged option lin_sol_svd_overwrite_input is used, this array is not saved on output.

X—   Array of size n × nb containing the solution matrix. (Output)

Optional Arguments

MROWS = m   (Input)
Uses array A(1:m, 1:n) for the input matrix.
Default: m = size (A, 1)

NCOLS = n   (Input)
Uses array A(1:m, 1:n) for the input matrix.
Default: n = size(A, 2)

NRHS = nb   (Input)
Uses the array b(1:, 1:nb) for the input right-hand side matrix.
Default: nb = size(b, 2)
Note that b must be a rank-2 array.

RANK = k   (Output)
Number of singular values that are at least as large as the value Small. It will satisfy k <= min(m, n).

u = u(:,:)   (Output)
Array of the same type and kind as A(1:m, 1:n). It contains the m × m orthogonal matrix U of the singular value decomposition.

s = s(:)   (Output)
Array of the same precision as A(1:m, 1:n). This array is real even when the matrix data is complex. It contains the m × n diagonal matrix S in a rank-1 array. The singular values are nonnegative and ordered non-increasing.

v = v(:,:)   (Output)
Array of the same type and kind as A(1:m, 1:n). It contains the n × n orthogonal matrix V.

iopt = iopt(:)   (Input)
Derived type array with the same precision as the input matrix. Used for passing optional data to the routine. The options are as follows:

 

Packaged Options for lin_sol_svd

 

Option Prefix = ?

Option Name

Option Value

s_, d_, c_, z_

lin_sol_svd_set_small

1

s_, d_, c_, z_

lin_sol_svd_overwrite_input

2

s_, d_, c_, z_

lin_sol_svd_safe_reciprocal

3

s_, d_, c_, z_

lin_sol_svd_scan_for_NaN

4

iopt(IO) = ?_options(?_lin_sol_svd_set_small, Small)
Replaces with zero a diagonal term of the matrix S if it is smaller in magnitude than the value Small. This determines the approximate rank of the matrix, which is returned as the rank= optional argument. A solution is approximated based on this replacement.
Default: the smallest number that can be safely reciprocated

iopt(IO) = ?_options(?_lin_sol_svd_overwrite_input,?_dummy)
Does not save the input arrays A(:,:) and b(:,:).

iopt(IO) = ?_options(?_lin_sol_svd_safe_reciprocal, safe)
Replaces a denominator term with safe if it is smaller in magnitude than the value safe.
Default: the smallest number that can be safely reciprocated

iopt(IO) = ?_options(?_lin_sol_svd_scan_for_NaN, ?_dummy)
Examines each input array entry to find the first value such that

isNaN(a(i,j)) .or. isNan(b(i,j)) ==.true.

See the isNaN() function, Chapter 10.
Default: Does not scan for NaNs

FORTRAN 90 Interface

Generic:                              CALL LIN_SOL_SVD (A, B, X [,…])

Specific:         The specific interface names are S_LIN_SOL_SVD, D_LIN_SOL_SVD, C_LIN_SOL_SVD, and Z_LIN_SOL_SVD.

Description

Routine LIN_SOL_SVD solves a rectangular system of linear algebraic equations in a least-squares sense. It computes the factorization of A known as the singular value decomposition. This decomposition has the following form:

A = USVT

The matrices U and V are orthogonal. The matrix S is diagonal with the diagonal terms non-in­creasing. See Golub and Van Loan (1989, Chapters 5.4 and 5.5) for further details.

Fatal, Terminal, and Warning Error Messages

See the messages.gls file for error messages for LIN_SOL_SVD. These error messages are numbered 401-412; 421-432; 441-452; 461-472.

Example 1: Least-squares solution of a Rectangular System

The least-squares solution of a rectangular m × n system Ax b is obtained. The use of lin_sol_lsq is more efficient in this case since the matrix is of full rank. This example anticipates a problem where the matrix A is poorly conditioned or not of full rank; thus, lin_sol_svd is the appropriate routine. Also, see operator_ex13, Chapter 10.

 

      use lin_sol_svd_int

      use rand_gen_int

 

      implicit none

 

! This is Example 1 for LIN_SOL_SVD.

 

      integer, parameter :: m=128, n=32

      real(kind(1d0)), parameter :: one=1d0

      real(kind(1d0)) A(m,n), b(m,1), x(n,1), y(m*n), err

 

! Generate a random matrix and right-hand side.

      call rand_gen(y)

      A = reshape(y,(/m,n/))

      call rand_gen(b(1:m,1))

 

! Compute the least-squares solution matrix of Ax=b.

      call lin_sol_svd(A, b, x)

 

! Check that the residuals are orthogonal to the

! column vectors of A.

      err = sum(abs(matmul(transpose(A),b-matmul(A,x))))/sum(abs(A))

      if (err <= sqrt(epsilon(one))) then

 

 

         write (*,*) 'Example 1 for LIN_SOL_SVD is correct.'

      end if

 

      end 

Output

 

Example 1 for LIN_SOL_SVD is correct.

Additional Examples

.p>.F90CH1.DOC!EX2_LIN_SOL_SVD;Example 2: Polar Decomposition of a Square Matrix

A polar decomposition of an n × n random matrix is obtained. This decomposition satisfies
A = PQ, where P is orthogonal and Q is self-adjoint and positive definite.

Given the singular value decomposition

the polar decomposition follows from the matrix products

This example uses the optional arguments u=”, “s=”, and “v=”, then ar­ray intrinsic functions to calculate P and Q. Also, see operator_ex14, Chapter 10.

 

      use lin_sol_svd_int

      use rand_gen_int

 

      implicit none

 

! This is Example 2 for LIN_SOL_SVD.

 

      integer i

      integer, parameter :: n=32

      real(kind(1d0)), parameter :: one=1.0d0, zero=0.0d0

      real(kind(1d0)) a(n,n), b(n,0), ident(n,n), p(n,n), q(n,n), &

             s_d(n), u_d(n,n), v_d(n,n), x(n,0), y(n*n)

      

! Generate a random matrix.

 

      call rand_gen(y)

      a = reshape(y,(/n,n/))

 

! Compute the singular value decomposition.

 

      call lin_sol_svd(a, b, x, nrhs=0, s=s_d, &

                u=u_d, v=v_d)

 

! Compute the (left) orthogonal factor.

 

      p = matmul(u_d,transpose(v_d))

 

! Compute the (right) self-adjoint factor.

 

      q = matmul(v_d*spread(s_d,1,n),transpose(v_d))

 

      ident=zero

      do i=1, n

         ident(i,i) = one

      end do

 

! Check the results.

 

      if (sum(abs(matmul(p,transpose(p)) - ident))/sum(abs(p)) &

               <= sqrt(epsilon(one))) then

         if (sum(abs(a - matmul(p,q)))/sum(abs(a)) &

               <= sqrt(epsilon(one))) then

            write (*,*) 'Example 2 for LIN_SOL_SVD is correct.'

         end if

      end if

 

      end 

Output

 

Example 2 for LIN_SOL_SVD is correct.

.p>.F90CH1.DOC!EX3_LIN_SOL_SVD;Example 3: Reduction of an Array of Black and White

An n × n array A contains entries that are either 0 or 1. The entry is chosen so that as a two-dimensional object with origin at the point (1, 1), the array appears as a black circle of radius n/4 centered at the point (n/2, n/2).

A singular value decomposition

 

is computed, where S is of low rank. Approximations using fewer of these nonzero singular values and vectors suffice to reconstruct A. Also, see operator_ex15, supplied with the product examples.

 

      use lin_sol_svd_int

      use rand_gen_int

      use error_option_packet

 

      implicit none

 

! This is Example 3 for LIN_SOL_SVD.

 

      integer i, j, k

      integer, parameter :: n=32

      real(kind(1e0)), parameter :: half=0.5e0, one=1e0, zero=0e0

      real(kind(1e0)) a(n,n), b(n,0), x(n,0), s(n), u(n,n), &

             v(n,n), c(n,n)

 

! Fill in value one for points inside the circle.

      a = zero

      do i=1, n

         do j=1, n

            if ((i-n/2)**2 + (j-n/2)**2 <= (n/4)**2) a(i,j) = one

         end do

      end do

 

! Compute the singular value decomposition.

      call lin_sol_svd(a, b, x, nrhs=0,&

            s=s, u=u, v=v)

 

! How many terms, to the nearest integer, exactly 

! match the circle?

           c = zero; k = count(s > half)

      do i=1, k

        c = c + spread(u(1:n,i),2,n)*spread(v(1:n,i),1,n)*s(i)

        if (count(int(c-a) /= 0) == 0) exit 

      end do

 

      if (i < k) then

         write (*,*) 'Example 3 for LIN_SOL_SVD is correct.'

      end if

      end 

Output

 

Example 3 for LIN_SOL_SVD is correct.

.p>.F90CH1.DOC!EX4_LIN_SOL_SVD;Example 4: Laplace Transform Solution

This example illustrates the solution of a linear least-squares system where the matrix is poorly con­ditioned. The problem comes from solving the integral equation:

The unknown function f(t) = 1 is computed. This problem is equivalent to the numerical inversion of the Laplace Transform of the function g(s) using real values of t and s, solving for a func­tion that is nonzero only on the unit interval. The evaluation of the integral uses the following
ap­proximate integration rule:

The points  are chosen equally spaced by using the following:

The points  are computed so that the range of g(s) is uniformly sampled. This requires the
so­lution of m equations

for j = 1, …, n and i = 1, …, m. Fortran 90 array operations are used to solve for the collocation points  as a single series of steps. Newton's method,

is applied to the array func­tion

where the following is true:

Note the coefficient matrix for the solution values

 

whose entry at the in­tersection of row i and column j is equal to the value

is explicitly integrated and evaluated as an array operation. The solution analysis of the resulting linear least-squares system

 is obtained by computing the singular value decomposition

An approximate solution is computed with the transformed right-hand side

followed by using as few of the largest singular values as possible to minimize the following squared error residual:

This determines an optimal value k to use in the approximate solution

Also, see operator_ex16, supplied with the product examples.

 

      use lin_sol_svd_int

      use rand_gen_int

      use error_option_packet

 

      implicit none

 

! This is Example 4 for LIN_SOL_SVD.

 

      integer i, j, k

      integer, parameter :: m=64, n=16

      real(kind(1e0)), parameter :: one=1e0, zero=0.0e0

      real(kind(1e0)) :: g(m), s(m), t(n+1), a(m,n), b(m,1), &

               f(n,1), U_S(m,m), V_S(n,n), S_S(n), &

               rms, oldrms

      real(kind(1e0)) :: delta_g, delta_t

    

      delta_g = one/real(m+1,kind(one))

 

! Compute which collocation equations to solve.

      do i=1,m

        g(i)=i*delta_g

      end do

 

! Compute equally spaced quadrature points.

      delta_t =one/real(n,kind(one))

      do j=1,n+1

        t(j)=(j-1)*delta_t

      end do

 

! Compute collocation points.

      s=m

      solve_equations: do

        s=s-(exp(-s)-(one-s*g))/(g-exp(-s))

        if (sum(abs((one-exp(-s))/s - g)) <= &

                 epsilon(one)*sum(g)) &

            exit solve_equations

      end do solve_equations

 

! Evaluate the integrals over the quadrature points.

      a = (exp(-spread(t(1:n),1,m)*spread(s,2,n)) &

        - exp(-spread(t(2:n+1),1,m)*spread(s,2,n))) / &

          spread(s,2,n)

 

      b(1:,1)=g

 

! Compute the singular value decomposition.

 

      call lin_sol_svd(a, b, f, nrhs=0, &

              rank=k, u=U_S, v=V_S, s=S_S)

 

! Singular values that are larger than epsilon determine 

! the rank=k.

      k = count(S_S > epsilon(one))

      oldrms = huge(one)

      g = matmul(transpose(U_S), b(1:m,1))

 

! Find the minimum number of singular values that gives a good 

! approximation to f(t) = 1.

 

      do i=1,k

         f(1:n,1) = matmul(V_S(1:,1:i), g(1:i)/S_S(1:i))

         f = f - one

         rms = sum(f**2)/n

         if (rms > oldrms) exit

         oldrms = rms

      end do

 

      write (*,"( ' Using this number of singular values, ', &

          &i4 / ' the approximate R.M.S. error is ', 1pe12.4)") &

      i-1, oldrms

 

      if (sqrt(oldrms) <= delta_t**2) then

         write (*,*) 'Example 4 for LIN_SOL_SVD is correct.'

      end if

 

      end

Output

 

Example 4 for LIN_SOL_SVD is correct.


Visual Numerics, Inc.
Visual Numerics - Developers of IMSL and PV-WAVE
http://www.vni.com/
PHONE: 713.784.3131
FAX:713.781.9260