Chapter 11: Probability Distribution Functions and Inverses

BETNPR

This function evaluates the noncentral beta probability density function.

Function Return Value

BETNPR — Function value, the value of the probability density function.   (Output)

Required Arguments

X — Argument for which the noncentral beta probability density function is to be evaluated.   (Input)
X must be non-negative and less than or equal to 1.

SHAPE1 — First shape parameter of the noncentral beta distribution.   (Input)
SHAPE1 must be positive.

SHAPE2 — Second shape parameter of the noncentral beta distribution.   (Input)
SHAPE2 must be positive.

LAMBDA — Noncentrality parameter.   (Input)
LAMBDA must be non-negative.

FORTRAN 90 Interface

Generic:                              BETNPR (X, SHAPE1, SHAPE2, LAMBDA)

Specific:                             The specific interface names are S_BETNPR and D_BETNPR.

Description

The noncentral beta distribution is a generalization of the beta distribution.  If Z is a noncentral chi-square random variable with noncentrality parameter   and  degrees of freedom, and Y is a chi-square random variable with  degrees of freedom which is statistically independent of Z, then

is a noncentral beta-distributed random variable and

is a noncentral F-distributed random variable.  The PDF for noncentral beta variable X can thus be simply defined in terms of the noncentral F PDF:

Where is a noncentral beta PDF with , , , and noncentrality parameter ; is a noncentral F PDF with argument f , numerator and denominator degrees of freedom  and  respectively, and noncentrality parameter ; and:

(See the documentation for function FNPR for a discussion of how the noncentral F PDF is defined and calculated.)

With a noncentrality parameter of zero, the noncentral beta distribution is the same as the beta distribution.

Example

This example traces out a portion of a noncentral beta distribution with parameters  SHAPE1 = 50, SHAPE2 = 5, and LAMBDA = 10.

 

      USE UMACH_INT

      USE BETNPR_INT

      USE FNPR_INT

      IMPLICIT NONE

     

      INTEGER NOUT, I

      REAL X, LAMBDA, SHAPE1, SHAPE2, &

         BPDFV, FPDFV, DBETNPR, DFNPR, F(8), &

         BPDFVEXPECT, DFDX

 

      DATA F /0.0, 0.4, 0.8, 3.2, 5.6, 8.8, 14.0, 18.0/

 

      CALL UMACH (2, NOUT)

      SHAPE1 = 50.0

      SHAPE2 = 5.0

      LAMBDA = 10.0

 

      WRITE (NOUT,'(/"  SHAPE1: ", F4.0, ";  SHAPE2: ", F4.0, ";  '// &

         'LAMBDA: ", F4.0 // 6x,"X",6x,"NCBETPDF(X)",3x,"NCBETPDF'// &

         '(X)",/     14x,"expected")') SHAPE1, SHAPE2, LAMBDA

 

      DO I = 1, 8

         X = (SHAPE1*F(I)) / (SHAPE1*F(I) + SHAPE2)

         DFDX = (SHAPE2/SHAPE1) / (1.0 - X)**2

         FPDFV = FNPR(F(I),2*SHAPE1,2*SHAPE2,LAMBDA)

         BPDFVEXPECT = DFDX * FPDFV

         BPDFV = BETNPR(X, SHAPE1, SHAPE2, LAMBDA)

         WRITE (NOUT,'(2X, F8.6, 2(2X, E12.6))')  X, BPDFVEXPECT, BPDFV

      END DO

      END

Output

 

  SHAPE1:  50.;  SHAPE2:   5.;  LAMBDA:  10.

 

      X      NCBETPDF(X)   NCBETPDF(X)

              expected

  0.000000  0.000000E+00  0.000000E+00

  0.800000  0.243720E+00  0.243720E+00

  0.888889  0.658624E+01  0.658624E+01

  0.969697  0.402367E+01  0.402365E+01

  0.982456  0.919544E+00  0.919542E+00

  0.988764  0.219100E+00  0.219100E+00

  0.992908  0.436654E-01  0.436647E-01

  0.994475  0.175215E-01  0.175217E-01



http://www.vni.com/
PHONE: 713.784.3131
FAX:713.781.9260