Chapter 3: Exponential Integrals and Related Functions

EI

This function evaluates the exponential integral for arguments greater than zero and the Cauchy principal value for arguments less than zero.

Function Return Value

EI — Function value.   (Output)

Required Arguments

X — Argument for which the function value is desired.   (Input)

FORTRAN 90 Interface

Generic:                              EI (X)

Specific:                             The specific interface names are S_EI and D_EI.

FORTRAN 77 Interface

Single:                                EI (X)

Double:                              The double precision function name is DEI.

Description

The exponential integral, Ei(x), is defined to be

The argument x must be large enough to insure that the asymptotic formula ex/x does not underflow, and x must not be so large that ex overflows.

Comments

If principal values are used everywhere, then for all X, EI(X) = −E1(−X) and E1(X) = −EI(−X).

Example

In this example, Ei(1.15) is computed and printed.

 

      USE EI_INT

      USE UMACH_INT

 

      IMPLICIT   NONE

!                                 Declare variables

      INTEGER    NOUT

      REAL       VALUE, X

!                                 Compute

      X     = 1.15

      VALUE = EI(X)

!                                 Print the results

      CALL UMACH (2, NOUT)

      WRITE (NOUT,99999) X, VALUE

99999 FORMAT (' EI(', F6.3, ') = ', F6.3)

      END

Output

 

EI( 1.150) =  2.304



http://www.vni.com/
PHONE: 713.784.3131
FAX:713.781.9260