CSITG

This function evaluates the integral of a cubic spline.

Function Return Value

CSITG — Value of the integral of the spline from A to B. (Output)

Required Arguments

A — Lower limit of integration. (Input)

B — Upper limit of integration. (Input)

BREAK — Array of length NINTV + 1 containing the breakpoints for the piecewise cubic representation. (Input)
BREAK must be strictly increasing.

CSCOEF — Matrix of size 4 by NINTV + 1 containing the local coefficients of the cubic pieces. (Input)

Optional Arguments

NINTV — Number of polynomial pieces. (Input)
Default: NINTV = size (BREAK,1) - 1.

FORTRAN 90 Interface

Generic: CSITG (A, B, BREAK, CSCOEF [])

Specific: The specific interface names are S_CSITG and D_CSITG.

FORTRAN 77 Interface

Single: CSITG(A, B, NINTV, BREAK, CSCOEF)

Double: The double precision function name is DCSITG.

Description

The function CSITG evaluates the integral of a cubic spline over an interval. It is a special case of the routine PPITG, which evaluates the integral of a piecewise polynomial. (A cubic spline is a piecewise polynomial of order 4.)

Example

This example computes a cubic spline interpolant to the function x2 using CSINT and evaluates its integral over the intervals [0., .5] and [0., 2.]. Since CSINT uses the not-a knot condition, the interpolant reproduces x2, hence the integral values are 1/24 and 8/3, respectively.

 

USE CSITG_INT

USE UMACH_INT

USE CSINT_INT

 

IMPLICIT NONE

INTEGER NDATA

PARAMETER (NDATA=10)

!

INTEGER I, NINTV, NOUT

REAL A, B, BREAK(NDATA), CSCOEF(4,NDATA), ERROR,&

EXACT, F, FDATA(NDATA), FI, FLOAT, VALUE, X,&

XDATA(NDATA)

INTRINSIC FLOAT

! Define function and integral

F(X) = X*X

FI(X) = X*X*X/3.0

! Set up a grid

DO 10 I=1, NDATA

XDATA(I) = FLOAT(I-1)/FLOAT(NDATA-1)

FDATA(I) = F(XDATA(I))

10 CONTINUE

! Compute cubic spline interpolant

CALL CSINT (XDATA, FDATA, BREAK, CSCOEF)

! Compute the integral of F over

! [0.0,0.5]

A = 0.0

B = 0.5

NINTV = NDATA - 1

VALUE = CSITG(A,B,BREAK,CSCOEF)

EXACT = FI(B) - FI(A)

ERROR = EXACT - VALUE

! Get output unit number

CALL UMACH (2, NOUT)

! Print the result

WRITE (NOUT,99999) A, B, VALUE, EXACT, ERROR

! Compute the integral of F over

! [0.0,2.0]

A = 0.0

B = 2.0

VALUE = CSITG(A,B,BREAK,CSCOEF)

EXACT = FI(B) - FI(A)

ERROR = EXACT - VALUE

! Print the result

WRITE (NOUT,99999) A, B, VALUE, EXACT, ERROR

99999 FORMAT (' On the closed interval (', F3.1, ',', F3.1,&

') we have :', /, 1X, 'Computed Integral = ', F10.5, /,&

1X, 'Exact Integral = ', F10.5, /, 1X, 'Error '&

, ' = ', F10.6, /, /)

END

Output

 

On the closed interval (0.0,0.5) we have :

Computed Integral = 0.04167

Exact Integral = 0.04167

Error = 0.000000

 

On the closed interval (0.0,2.0) we have :

Computed Integral = 2.66666

Exact Integral = 2.66667

Error = 0.000006