PPITG

This function evaluates the integral of a piecewise polynomial.

Function Return Value

PPITG — Value of the integral from A to B of the piecewise polynomial. (Output)

Required Arguments

A — Lower limit of integration. (Input)

B — Upper limit of integration. (Input)

BREAK — Array of length NINTV + 1 containing the breakpoints for the piecewise polynomial. (Input)
BREAK must be strictly increasing.

PPCOEF — Array of size KORDER * NINTV containing the local coefficients of the piecewise polynomial pieces. (Input)
PPCOEF is treated internally as a matrix of size KORDER by NINTV.

Optional Arguments

KORDER — Order of the polynomial. (Input)
Default: KORDER = size (PPCOEF,1).

NINTV — Number of piecewise polynomial pieces. (Input)
Default: NINTV = size (PPCOEF,2).

FORTRAN 90 Interface

Generic: PP1TG (A, B, BREAK, PPCOEF [])

Specific: The specific interface names are S_PP1TG and D_PP1TG.

FORTRAN 77 Interface

Single: PP1TG (A, B, KORDER, NINTV, BREAK, PPCOEF)

Double: The double precision function name is DPP1TG.

Description

The routine PPITG evaluates the integral of a piecewise polynomial over an interval.

Example

In this example, we compute a quadratic spline interpolant to the function x2 using the IMSL routine BSINT. We then evaluate the integral of the spline interpolant over the intervals [0, 1/2] and [0, 2]. The interpolant reproduces x2, and hence, the values of the integrals are 1/24 and 8/3, respectively.

 

USE IMSL_LIBRARIES

 

IMPLICIT NONE

INTEGER KORDER, NDATA, NKNOT

PARAMETER (KORDER=3, NDATA=10, NKNOT=NDATA+KORDER)

!

INTEGER I, NOUT, NPPCF

REAL A, B, BREAK(NDATA), BSCOEF(NDATA), EXACT, F,&

FDATA(NDATA), FI, FLOAT, PPCOEF(KORDER,NDATA),&

VALUE, X, XDATA(NDATA), XKNOT(NKNOT)

INTRINSIC FLOAT

!

F(X) = X*X

FI(X) = X*X*X/3.0

! Set up interpolation points

DO 10 I=1, NDATA

XDATA(I) = FLOAT(I-1)/FLOAT(NDATA-1)

FDATA(I) = F(XDATA(I))

10 CONTINUE

! Generate knot sequence

CALL BSNAK (NDATA, XDATA, KORDER, XKNOT)

! Interpolate

CALL BSINT (NDATA, XDATA, FDATA, KORDER, XKNOT, BSCOEF)

! Convert to piecewise polynomial

CALL BSCPP (KORDER, XKNOT, NDATA, BSCOEF, NPPCF, BREAK, PPCOEF)

! Compute the integral of F over

! [0.0,0.5]

A = 0.0

B = 0.5

VALUE = PPITG(A,B,BREAK,PPCOEF,NINTV=NPPCF)

EXACT = FI(B) - FI(A)

! Get output unit number

CALL UMACH (2, NOUT)

! Print the result

WRITE (NOUT,99999) A, B, VALUE, EXACT, EXACT - VALUE

! Compute the integral of F over

! [0.0,2.0]

A = 0.0

B = 2.0

VALUE = PPITG(A,B,BREAK,PPCOEF,NINTV=NPPCF)

EXACT = FI(B) - FI(A)

! Print the result

WRITE (NOUT,99999) A, B, VALUE, EXACT, EXACT - VALUE

99999 FORMAT (' On the closed interval (', F3.1, ',', F3.1,&

') we have :', /, 1X, 'Computed Integral = ', F10.5, /,&

1X, 'Exact Integral = ', F10.5, /, 1X, 'Error '&

, ' = ', F10.6, /, /)

!

END

Output

 

On the closed interval (0.0,0.5) we have :

Computed Integral = 0.04167

Exact Integral = 0.04167

Error = 0.000000

 

On the closed interval (0.0,2.0) we have :

Computed Integral = 2.66667

Exact Integral = 2.66667

Error = 0.000001