public static enum GradientBoosting.LossFunctionType extends Enum<GradientBoosting.LossFunctionType>
Enum Constant and Description |
---|
ADABOOST
The loss criteria is the AdaBoost.M1 criterion.
|
BERNOULLI
The loss criteria is the binomial or Bernoulli negative
log-likelihood, or deviance.
|
HUBER_M
The loss criteria is the Huber-M weighted squared error and absolute
deviation error with parameter \(\alpha\).
|
LEAST_ABSOLUTE_DEVIATION
The loss criteria is least absolute deviation error.
|
LEAST_SQUARES
The loss criteria is least squared error.
|
MULTINOMIAL_DEVIANCE
The loss criteria is the (K-class) multinomial negative
log-likelihood, or multinomial deviance.
|
Modifier and Type | Method and Description |
---|---|
static GradientBoosting.LossFunctionType |
valueOf(String name)
Returns the enum constant of this type with the specified name.
|
static GradientBoosting.LossFunctionType[] |
values()
Returns an array containing the constants of this enum type, in
the order they are declared.
|
public static final GradientBoosting.LossFunctionType LEAST_SQUARES
\( L({y_i,f(x_i)}) = \sum (y_i - f(x_i))^2 \)
public static final GradientBoosting.LossFunctionType LEAST_ABSOLUTE_DEVIATION
\( L({y_i,f(x_i)}) = \sum |(y_i - f(x_i))| \)
public static final GradientBoosting.LossFunctionType HUBER_M
\( L({y_i,f(x_i)}) = \sum \Psi(y_i,f(x_i)) \)
where$$ \Psi(y,f(x)) = \left\{ \begin{array}{ll} (y-f(x))^2 & {\rm for}\;|y-f(x)| \le \delta\; \\ 2\delta(|y-f(x)| - \delta) & {\rm for}\;|y-f(x)| > \delta\; \end{array} \right.$$
And where \(\delta\) is the \(\alpha\) -empirical quantile of the residuals, \({y_i-f(x_i),i=1,...,n}\)
public static final GradientBoosting.LossFunctionType ADABOOST
\( L({y_i,f(x_i)}) = \sum \exp\left( -(2y_i-1)f(x_i)\right) \)
public static final GradientBoosting.LossFunctionType MULTINOMIAL_DEVIANCE
\(L({y_i,f(x_i)})=-2 \sum_i \sum_k y_{ik}\log(p_{ik})\)
where\(p_{ik}=\frac{\exp{f_k(x_i)}}{(\sum_k \exp{f_k(x_i)})}\)
public static final GradientBoosting.LossFunctionType BERNOULLI
\( L({y_i,f(x_i)}) = -2 \sum {(y_if(x_i) - \log(1+\exp(f(x_i)))}\)
public static GradientBoosting.LossFunctionType[] values()
for (GradientBoosting.LossFunctionType c : GradientBoosting.LossFunctionType.values()) System.out.println(c);
public static GradientBoosting.LossFunctionType valueOf(String name)
name
- the name of the enum constant to be returned.IllegalArgumentException
- if this enum type has no constant with the specified nameNullPointerException
- if the argument is nullCopyright © 2020 Rogue Wave Software. All rights reserved.