public class SVOneClass extends SupportVectorMachine implements Serializable, Cloneable
The one-class SVM algorithm estimates the support of a high-dimensional distribution without any class information. The primal problem of one-class SVM is
$$\min_ {w, \xi, \rho} \frac{1}{2} w^Tw-\rho+\frac{1}{\nu l}\sum_{i=1}^{l} \xi _i$$
$$\text{subject to} \, \, (w^T \phi (x_i)) \geq \rho - \xi _i,$$
$$ \xi _i \geq 0, i=1, \, \ldots \,,\,l$$
SupportVectorMachine.ReflectiveOperationException
PredictiveModel.CloneNotSupportedException, PredictiveModel.PredictiveModelException, PredictiveModel.StateChangeException, PredictiveModel.SumOfProbabilitiesNotOneException, PredictiveModel.VariableType
Constructor and Description |
---|
SVOneClass(double[][] xy,
int responseColumnIndex,
PredictiveModel.VariableType[] varType)
Constructs a one class support vector machine.
|
SVOneClass(double[][] xy,
int responseColumnIndex,
PredictiveModel.VariableType[] varType,
Kernel k)
Constructs a one class support vector machine.
|
SVOneClass(SVOneClass oneClassModel)
Constructs a copy of the input
SVOneClass predictive model. |
Modifier and Type | Method and Description |
---|---|
SVOneClass |
clone()
Clones an
SVOneClass predictive model. |
protected SVModel |
optimize(DataNode[][] x,
double[] y,
double[] w,
int len,
Kernel kernel)
Performs the one class support vector machine optimization problem.
|
protected double[] |
predictValues(SVModel model,
double[][] attributeData)
Generates the predicted values on the attribute data using the given
support vector machine model.
|
fitModel, getConvergenceTolerance, getKernel, getKernelParameters, getModel, getNuParameter, getRegularizationParameter, getWorkingArraySize, isNuFormulation, isProbability, isShrinking, predict, predict, setConfiguration, setConvergenceTolerance, setKernel, setKernelParameters, setNuFormulation, setNuParameter, setProbability, setRegularizationParameter, setShrinking, setWorkArraySize
getClassCounts, getClassErrors, getClassLabels, getClassProbabilities, getCostMatrix, getMaxNumberOfCategories, getMaxNumberOfIterations, getNumberOfClasses, getNumberOfColumns, getNumberOfMissing, getNumberOfPredictors, getNumberOfRows, getNumberOfUniquePredictorValues, getPredictorIndexes, getPredictorTypes, getPrintLevel, getPriorProbabilities, getRandomObject, getResponseColumnIndex, getResponseVariableAverage, getResponseVariableMostFrequentClass, getResponseVariableType, getTotalWeight, getVariableType, getWeights, getXY, isConstantSeries, isMustFitModel, isUserFixedNClasses, predict, setClassCounts, setClassLabels, setClassProbabilities, setCostMatrix, setMaxNumberOfCategories, setMaxNumberOfIterations, setMustFitModel, setNumberOfClasses, setPredictorIndex, setPredictorTypes, setPrintLevel, setPriorProbabilities, setRandomObject, setResponseColumnIndex, setTrainingData, setVariableType, setWeights
public SVOneClass(double[][] xy, int responseColumnIndex, PredictiveModel.VariableType[] varType)
xy
- a double
matrix containing the training data and
associated response values
by the number of variablesresponseColumnIndex
- an int
, the column index of the
response variablevarType
- a PredictiveModel.VariableType
array of
length equal to xy[0].length
containing the type of each
variablepublic SVOneClass(double[][] xy, int responseColumnIndex, PredictiveModel.VariableType[] varType, Kernel k)
xy
- a double
matrix containing the training data and
associated response valuesresponseColumnIndex
- an int
, the column index of the
response variablevarType
- a PredictiveModel.VariableType
array of
length equal to xy[0].length
containing the type of each
variablek
- a Kernel
, the kernel functionpublic SVOneClass(SVOneClass oneClassModel)
SVOneClass
predictive model.oneClassModel
- an SVOneClass
predictive modelpublic SVOneClass clone()
SVOneClass
predictive model.clone
in class PredictiveModel
SVOneClass
predictive modelprotected SVModel optimize(DataNode[][] x, double[] y, double[] w, int len, Kernel kernel) throws NoSuchMethodException, InstantiationException, IllegalAccessException, InvocationTargetException
optimize
in class SupportVectorMachine
x
- a DataNode
matrix containing the attribute datay
- a double
array containing the response variablelen
- an int
, the total possible number of support
vectorsw
- a double
array containing the observation weightskernel
- a Kernel
objectSVModel
structure containing the fitted modelNoSuchMethodException
- thrown when a particular method
cannot be foundInstantiationException
- thrown when an application tries
to create an instance of a class using the newInstance
method in class Class
, but the specified class object cannot
be instantiated.IllegalAccessException
- thrown when an application tries
to reflectively create an instance (other than an array), set or get a
field, or invoke a method, but the currently executing method does not
have access to the definition of the specified class, field, method or
constructorInvocationTargetException
- a checked exception
that wraps an exception thrown by an invoked method or constructorprotected double[] predictValues(SVModel model, double[][] attributeData) throws PredictiveModel.SumOfProbabilitiesNotOneException
predictValues
in class SupportVectorMachine
model
- a fitted SVModel
objectattributeData
- a double
matrix containing the
attribute (or predictor) datadouble
array containing the predictions for each
row in the input attribute dataPredictiveModel.SumOfProbabilitiesNotOneException
- the
sum of probabilities is not approximately oneCopyright © 2020 Rogue Wave Software. All rights reserved.