public class GammaDistribution extends Object implements ProbabilityDistribution, Serializable
GammaDistribution
evaluates the gamma density of a given
set of data, xData
. If parameters are not supplied, the
Eval
method fits the gamma probability density function to
the data by first calculating the shape and scale parameters using an MLE
technique for a best fit. The gamma probability density function is defined
as:
$$ f(x)= {x}^{a-1}\frac{e^{-\frac{x}{b}}} {b^a \Gamma(a)} \mbox{,}\,\,\,x \gt 0 \,\mbox{,}\,\,a \gt 0 \,\,\,\mbox{and}\,\,\, b \gt 0 \,\,\mbox{,}
$$ where a and b are the scale and shape parameters.
The DataMining
package class NaiveBayesClassifier
uses GammaDistribution
as a method to train continuous data.
Constructor and Description |
---|
GammaDistribution() |
Modifier and Type | Method and Description |
---|---|
double[] |
eval(double[] xData)
Fits a gamma probability distribution to
xData and
returns the probability density at each value. |
double[] |
eval(double[] xData,
Object[] parameters)
Evaluates a gamma probability distribution with a given set of
parameters at each point in
xData and returns the
probability density at each value. |
double |
eval(double xData,
Object[] parameters)
Evaluates a gamma probability density at a given point
xData . |
Object[] |
getParameters()
Returns the current parameters of the gamma probability
density function.
|
double |
getScaleParameter()
Returns the maximum-likelihood estimate found for the gamma scale
parameter.
|
double |
getShapeParameter()
Returns the maximum-likelihood estimate found for the gamma shape
parameter.
|
public double getShapeParameter()
double
representing the maximum-likelihood
estimate found for the gamma shape parameterpublic double getScaleParameter()
double
representing the maximum-likelihood
estimate found for the gamma scale parameterpublic double[] eval(double[] xData)
xData
and
returns the probability density at each value.eval
in interface Distribution
xData
- a double
array representing the points at
which the gamma probability distribution function is to
be evaluateddouble
array representing the gamma probability
density at each value of xData
public double[] eval(double[] xData, Object[] parameters)
xData
and returns the
probability density at each value.eval
in interface ProbabilityDistribution
xData
- a double
array representing the points at
which the gamma probability distribution function is to
be evaluatedparameters
- an Object
array representing the
parameters used to evaluate the gamma distribution,
see method getParameters
double
array representing the gamma probability
density at each value of xData
public double eval(double xData, Object[] parameters)
xData
.eval
in interface ProbabilityDistribution
xData
- a double
representing the point at which the
gamma probability distribution function is to be evaluatedparameters
- an Object
array representing the
parameters used to evaluate the gamma distribution,
see method getParameters
double
representing the gamma probability
density at xData
public Object[] getParameters()
getParameters
in interface ProbabilityDistribution
Object
array containing the parameters
resulting from the last invocation of the
(Distribution
) eval
method with
the following signature, double[] eval(double[] xData)
.
This Object
array can be used as input
to the eval
methods that require an
Object
array of distribution parameters
as input.Copyright © 2020 Rogue Wave Software. All rights reserved.