Package | Description |
---|---|
com.imsl.stat |
Statistical methods.
|
Modifier and Type | Method and Description |
---|---|
void |
ARSeasonalFit.compute()
Computes the minimum AIC and optimum values for s and d
based upon the candidates provided in
sInitial and
dInitial , and computes the values for the transformed series,
\(W_t(s,d)\). |
void |
ARAutoUnivariate.compute()
Determines the autoregressive model with the minimum AIC by fitting
autoregressive models from 0 to
maxlag lags using the method
of moments or an estimation method specified by the user through
setEstimationMethod . |
void |
ARMA.compute()
Computes least-square estimates of parameters for an ARMA model.
|
void |
AutoARIMA.compute(int maxlag)
Estimates potential missing values, detects and determines outliers and
simultaneously fits an optimum model from a set of different \(
\text{ARIMA}(p,0,0)\times(0,d,0)_s\) models to the outlier free
time series.
|
void |
ARMAOutlierIdentification.compute(int[] model)
Detects and determines outliers and simultaneously estimates the model
parameters for the given time series.
|
void |
AutoARIMA.compute(int[] arOrders,
int[] maOrders)
Estimates potential missing values, detects and determines outliers and
simultaneously fits an optimum model from a set of different \(
\text{ARIMA}(p,0,q)\times(0,d,0)_s\) models to the outlier free
time series.
|
void |
AutoARIMA.compute(int p,
int q,
int s,
int d)
Estimates potential missing values, detects and determines outliers and
simultaneously fits an \(\text{ARIMA}(p,0,q)\times(0,d,0)_s
\) model to the outlier free time series.
|
double[][] |
ARAutoUnivariate.forecast(int nForecast)
Returns forecasts and associated confidence interval offsets.
|
double |
ARAutoUnivariate.getAIC()
Returns the final estimate for Akaike's Information Criterion (AIC) at
the optimum.
|
double[] |
ARSeasonalFit.getAR()
Returns the final autoregressive parameter estimates at the optimum in
the transformed series \(W_t\).
|
double[] |
ARAutoUnivariate.getAR()
Returns the final auto regressive parameter estimates at the optimum AIC
using the estimation method specified in
setEstimationMethod
. |
double[] |
ARMAEstimateMissing.getCompleteTimeSeries()
Returns a
double precision vector of length
tpoints[tpoints.length-1]-tpoints[0]+1 containing the
observed values in the time series z plus estimates for
missing values in gaps identified in tpoints . |
double |
ARAutoUnivariate.getConstant()
Returns the estimate for the constant parameter in the ARMA series.
|
double[] |
ARAutoUnivariate.getForecast(int nForecast)
Returns forecasts
|
double |
ARAutoUnivariate.getInnovationVariance()
Returns the final estimate for the innovation variance.
|
double |
ARAutoUnivariate.getLikelihood()
Returns the final estimate for \(L=e^{-(\mbox{AIC} - 2p)/2}
\), where p is the AR order, AIC is Akaike's Information
Criterion, and L is the likelihood function evaluated for the
optimum autoregressive model.
|
double |
ARAutoUnivariate.getMean()
Returns the mean used to center the time series
z . |
int |
ARSeasonalFit.getNLost()
Returns the number of values in the initial part of the series lost to
differencing.
|
int[] |
ARSeasonalFit.getOptimumD()
Returns the optimum values for d selected among the candidates in
dInitial . |
int[] |
ARSeasonalFit.getOptimumS()
Returns the optimum values for s selected among the candidates in
sInitial . |
int |
ARAutoUnivariate.getOrder()
Returns the order of the AR model selected with the minimum AIC.
|
double[] |
ARAutoUnivariate.getTimsacAR()
Returns the final auto regressive parameter estimates at the optimum AIC
estimated by the original TIMSAC routine (UNIMAR).
|
double |
ARAutoUnivariate.getTimsacConstant()
Returns the estimate for the constant parameter in the ARMA series.
|
double |
ARAutoUnivariate.getTimsacVariance()
Returns the final estimate for the innovation variance calculated by the
TIMSAC automatic AR modeling routine (UNIMAR).
|
double[] |
ARSeasonalFit.getTransformedTimeSeries()
Returns the transformed series, \(W_t(s,d)\).
|
Copyright © 2020 Rogue Wave Software. All rights reserved.