public class NormalPD extends ProbabilityDistribution implements PDFHessianInterface, ClosedFormMaximumLikelihoodInterface, Serializable, Cloneable
| Constructor and Description |
|---|
NormalPD()
Constructor for the normal probability distribution.
|
| Modifier and Type | Method and Description |
|---|---|
double[] |
getClosedFormMLE(double[] x)
Returns the closed form maximum likelihood estimates.
|
double[] |
getClosedFormMlStandardError(double[] x)
Returns the standard errors of the closed form maximum likelihood estimates.
|
double[] |
getMLEs(double[] x)
Deprecated.
Use
NormalPD.getClosedFormMLE(double[]) instead. |
double[] |
getParameterLowerBounds()
Returns the lower bounds of the parameters.
|
double[] |
getParameterUpperBounds()
Returns the upper bounds of the parameters.
|
double[] |
getPDFGradient(double x,
double... params)
Returns the analytic gradient of the pdf.
|
double[][] |
getPDFHessian(double x,
double... params)
Returns the analytic Hessian matrix of the pdf.
|
double |
pdf(double x,
double... params)
Returns the value of the normal probability density function.
|
getNumberOfParameters, getPDFGradientApproximation, getPDFHessianApproximation, getRangeOfX, setRangeOfXpublic double[] getParameterLowerBounds()
getParameterLowerBounds in class ProbabilityDistributiondouble array containing the lower bounds for
\(\mu\in\mathbb{R}\) and \(\sigma\gt0\)public double[] getParameterUpperBounds()
getParameterUpperBounds in class ProbabilityDistributiondouble array containing the upper bounds
for \(\mu\in\mathbb{R}\) and \(\sigma\gt0\)public double pdf(double x,
double... params)
The probability density function for a normal distribution is given by $$f(x; \mu,\sigma) = \frac{1}{\sqrt{2\pi}\sigma} {\exp}^{ -\frac{{(x - \mu)}^2}{{2 {\sigma}^2}} } $$ where \(\mu\) and \(\sigma >0\) are the mean and standard deviation of the random variable.
pdf in class ProbabilityDistributionx - a double, the value (quantile) at which to evaluate
the pdfparams - a double array containing values of the
parameters,\(\mu\) and \(\sigma\). The parameters can also be given
in the form pdf(x,a,b),
where a=\(\mu\) and b=\(\sigma\) are scalars.double, the probability density at
x given the parameter valuespublic double[] getPDFGradient(double x,
double... params)
getPDFGradient in interface PDFGradientInterfacex - a double, the value at which to evaluate
the gradientparams - a double array containing the parametersdouble array containing the partial derivatives of
the pdf with respect to the parameterspublic double[][] getPDFHessian(double x,
double... params)
getPDFHessian in interface PDFHessianInterfacex - a double, the value at which to evaluate
the Hessianparams - a double array containing the parametersdouble matrix containing the second partial
derivatives of the pdf with respect to the parameterspublic double[] getClosedFormMLE(double[] x)
getClosedFormMLE in interface ClosedFormMaximumLikelihoodInterfacex - a double array containing the datadouble array containing the maximum likelihood estimates
for \(\mu\) and \(\sigma\)public double[] getMLEs(double[] x)
NormalPD.getClosedFormMLE(double[]) instead.These are the maximum likelihood estimates for the mean and standard deviation of the Normal distribution, given the data.
x - a double array containing the datadouble array containing the mean and standard
deviationpublic double[] getClosedFormMlStandardError(double[] x)
getClosedFormMlStandardError in interface ClosedFormMaximumLikelihoodInterfacex - a double array containing the datadouble array containing the standard errors for the
estimates of \(\mu,\sigma\)Copyright © 2020 Rogue Wave Software. All rights reserved.